活动发起人@小虚竹 想对你说:
这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你参加为期14天的创作挑战赛!
人工智能在制造业中的应用:预测性维护与质量控制
随着人工智能(AI)技术的飞速发展,其在制造业中的应用日益广泛,为行业带来了前所未有的变革。其中,预测性维护和质量控制是AI在制造业中最为突出的两个应用领域。本文将结合CSDN网站上的相关资源,分享一些实用的解决技巧,并通过代码示例进行详细分析。
一、预测性维护
1.1 预测性维护概述
预测性维护是一种依托AI、物联网(IoT)、大数据分析等技术的先进设备维护策略。它通过对设备运行状态进行实时、全方位且不间断的监测,提前预测设备可能出现的故障,从而避免设备突发停机,确保生产流程的顺畅无阻。
1.2 实战技巧与代码示例
1.2.1 数据采集与处理
首先,需要采集设备的运行数据,如温度、振动、压力等。这些数据可以通过传感器实时获取,并通过物联网技术传输到数据处理中心。
# 示例:使用Python和MQTT协议采集设备数据
import paho.mqtt.client as mqtt
def on_connect(client, userdata, flags, rc):
print("Connected with result code "+str(rc))
client.subscribe("devices/sensor_data")
def on_message(client, userdata, msg):
data = msg.payload.decode("utf-8")
print("Received data: " + data)
# 在此处处理接收到的数据,如存储到数据库或进行实时分析
client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message
client.connect("broker.hivemq.com", 1883, 60)