图像处理与计算机视觉技术:实用技巧与代码示例
一、引言
图像处理与计算机视觉技术作为人工智能领域的关键分支,在医疗诊断、自动驾驶、人脸识别等众多领域发挥着重要作用。图像处理侧重于对图像本身进行操作,如增强、复原、编码等;而计算机视觉则致力于从图像中提取信息,以理解场景并做出决策。本文将结合CSDN网站上的实用技巧,深入探讨图像处理与计算机视觉技术的核心要点,并辅以丰富的代码和表格示例分析。
二、图像处理实用技巧
(一)图像增强
- 对比度调整
- 原理:通过线性变换公式 (g(x) = a \cdot f(x) + b) 调整图像亮度和对比度。其中,(a)(对比度)大于1时增强对比度,0到1之间时降低对比度,等于 -1时实现反色效果;(b)(亮度)大于0时增加整体亮度,小于0时降低亮度。
- 代码示例:
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图像
img = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)
# 调整对比度和亮度
a = 1.2 # 对比度
b = 20 # 亮度
img_adjusted = cv2.multiply(img, a) + b
img_adjusted = np.clip(img_adjusted, 0, 255).astype(np.uint8)
# 显示图像
plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Original Image')
plt.subplot(122), plt.imshow(img_adjusted, cmap='gray'), plt.title('Adjusted Image')
plt.show()
- 效果分析:从示例图像可以看出,调整对比度和亮度后,图像的细节更加清晰,视觉效果得到显著改善。
- 锐化
- 原理:通过对图像的边缘进行加强,使图像更加锐利。常用的锐化方法有拉普拉斯锐化、高斯梯度锐化等。
- 代码示例(拉普拉斯锐化):
import cv2
import numpy as np
# 读取图像
img = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)
# 拉普拉斯锐化
laplacian = cv2.Laplacian(img, cv2.CV_64F)
sharpened = cv2.convertScaleAbs(img - laplacian)
# 显示图像
cv2.imshow('Original Image', img)
cv2.imshow('Sharpened Image', sharpened)
cv2.waitKey(0)
cv2.destroyAllWindows()
- 效果分析:拉普拉斯锐化能够突出图像的边缘信息,使图像的轮廓更加清晰。
(二)图像去噪
- 高斯滤波
- 原理:将当前像素与其周围的像素乘以一个正态分布的权重值,从而去除图像中的高斯噪声。
- 代码示例:
import cv2
import numpy as np
# 读取图像
img = cv2.imread('noisy_image.jpg')
# 高斯滤波
img_gauss = cv2.GaussianBlur(img, (5, 5), 0)
# 显示图像
cv2.imshow('Original Image', img)
cv2.imshow('Gaussian Blurred Image', img_gauss)
cv2.waitKey(0)
cv2.destroyAllWindows()
- 效果分析:高斯滤波能够有效地平滑图像,去除噪声,同时保留图像的主要特征。
- 中值滤波
- 原理:将当前像素与其周围的像素按照像素值大小排序,取中间值作为滤波后的像素值,对于去除椒盐噪声效果较好。
- 代码示例:
import cv2
import numpy as np
# 读取图像
img = cv2.imread('noisy_image.jpg')
# 中值滤波
img_median = cv2.medianBlur(img, 5)
# 显示图像
cv2.imshow('Original Image', img)
cv2.imshow('Median Blurred Image', img_median)
cv2.waitKey(0)
cv2.destroyAllWindows()
- 效果分析:中值滤波能够有效地去除椒盐噪声,同时对图像的边缘信息保护较好。
(三)图像分割
- 全连接网络(FCN)
- 原理:全连接网络是一种卷积神经网络的变体,它取消了分类网络中的全连接层,用卷积和上采样实现“像素级分类”,能够输出高分辨率的分割图像。
- 代码示例(简化版):
import tensorflow as