Python中数据清洗报错的排查与修复

Python中数据清洗报错的排查与修复

在数据分析和机器学习项目中,数据清洗是确保模型准确性的关键步骤。Python的Pandas和NumPy库提供了强大的工具,但开发者常遇到数据类型错误、缺失值处理不当、异常值识别困难等问题。本文基于CSDN技术社区的实战案例,系统梳理数据清洗中的常见错误及解决方案,提供可复用的代码模板和最佳实践。


一、核心报错场景与解决方案

1. 数据类型错误(如字符串误识别为数值)

典型场景

  • 数值列包含非数字字符(如逗号、货币符号)
  • 布尔值被错误识别为字符串
  • 时间列未转换为日期时间格式

解决方案
方案1:强制类型转换与错误处理

import pandas as pd
import numpy as np

# 示例数据
data = {
   'price': ['$1,200', '1500', 'N/A', '2,300']}
df = pd.DataFrame(data)

# 清洗步骤
df['price'] = df['price'].replace('N/A', np.nan)  # 替换缺失值标记
df['price'] = df['price'].str.replace('[\$,]', '', regex=True)  # 移除符号
df['price'] = pd.to_numeric(df['price'], errors='coerce')  # 转换为数值

print(df.dtypes)  # 输出: price    float64

方案2:时间列标准化

# 示例数据
time_data = {
   'date': ['2024-12-25', '25/12/2024', 'Dec 25, 2024']}
df_time = pd.DataFrame(time_data)

# 尝试多种格式解析
date_formats = ['%Y-%m-%d', '%d/%m/%Y', '%b %d, %Y']
for fmt in date_formats:
    df_time['parsed_date'] = pd.to_datetime(df_time['date'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喜欢编程就关注我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值