机器学习
文章平均质量分 89
shelgi
一个每天都在学习的可爱程序猿
展开
-
Poetry上传一个属于自己的库
其实这是一个拖了很久很久的坑,不知道多少人看过我之前的一篇博客关于torch.fx的使用,在这里面我用torch.fx实现了一些很有趣的功能比如模型可视化.所以当时就有一个想法,把代码封装一下写成一个属于自己的三方库,正好今天有点时间就把这个坑给填上.这个工具的主要功能很简单,直接指定某个py文件工具会自动寻找文件中所有的nn.Module并进行解析可视化.原创 2023-07-05 16:17:56 · 288 阅读 · 0 评论 -
IEEE UV 2022 “Vision Meets Algae” Object Detection Challenge BaseLine
今天正好是1024总得发点什么,上午正愁着没东西发突然逛着找到这个比赛正好水一篇Blog出来.要说改进想法当然也是有的,不过看到要小paper和视频介绍果断放弃,实在没精力.感觉图片大小可以用1024来训练,毕竟原图(2048,2880)并不小,大图片训练可以对小目标更清晰加点常用的注意力多尺度和上下文学习仔细观察训练图片对象本身找找特点。原创 2022-10-24 14:21:23 · 1092 阅读 · 7 评论 -
Go Machine Learning
最近因为一直在弄部署整天c++写的非常头疼,趁着昨天把分割部署写好后打算换换口味,想着试试Go语言来实现一些机器学习,深度学习会是什么样子.之前推荐过Go+(goplus),不过这次打算用更基础的go语法来尝试.对于某个从未涉及的领域一开始肯定是一脸茫然,所以需要先找点资料入门.网上相关资料也没有特别多,搜的话基本就只有那几本书.不过这不重要随便找一本书了解入个门,后面的就都可以举一反三了这里我看的是这本机器学习Go语言实现,提取码:.这本书的出版时间是2018年,也就代表着书中的代码不一定全部能用,毕竟一原创 2022-10-20 22:41:26 · 1874 阅读 · 4 评论 -
数据分析大作业---山火/非法焚烧秸秆的预防系统
文章目录背景及要求开始动手1.数据探索2.数据预处理3.数据建模与模型评估1.SVM2.MLP3.随机森林4.开始试试CNN5.比较SVM和CNN6.Adaboost是否能挽回一点传统机器学习的颜面呢4.总结吐槽时间背景及要求然后数据呢是BMP格式的图片,大小为40*40,大致如下数据集目录结构其中0是非烟火,1是烟火然后总结一下任务本次大作业的目标是基于提供的图像,获得一个识别烟火的图像分类器。流程数据探索数据预处理数据建模模型评估总结要求建模:使用两种传统原创 2020-05-14 19:21:53 · 1211 阅读 · 0 评论 -
数据分析---众包任务
文章目录前言开始动手1.导入数据,查看并且计算指标2.导入我们得到的指标,并且进行主成分分析3.添加主成分数据,进行拟合4.用svr给未完成的任务重新定价5.用原价格和主成分去训练SVM分类模型用刚刚训练好的SVM对新的价格和特征做预测模型评价最后前言依然是记录一次我的近期作业,这个做了一天半才做完,昨天通宵去拟合函数结果还是不理想,耽误了太多时间。主要原因还是昨天取的特征值太少了导致一直欠拟...原创 2020-04-30 03:16:18 · 2996 阅读 · 6 评论 -
数据分析-----基于水质图像的水质分析
文章目录1.前言2.正文作业背景及要求开始动手1.首先,进行图片处理得到颜色矩2.建模过程思考与改进结束1.前言这一次是分享一次我的作业,然后这个是我做的,等老师过几天分享他的之后我会把老师做得好的地方过来更新的。2.正文作业背景及要求还是之前的数据分析与挖掘实战里面的案例,得到的数据集是图片,然后我们需要进行提取图片的特征颜色矩然后建模,大概的流程和操作方法见下图。基本流程图像...原创 2020-04-22 17:33:39 · 5418 阅读 · 8 评论 -
机器学习---8.聚类问题
之前讲的都是监督学习,今天来说说非监督学习。而其中聚类问题作为非监督学习的代表,更要好好谈谈。非监督学习回顾一下,什么是非监督学习。非监督学习是指不受监督的学习,是一种自由的学习方式,没有先验知识的指导。或者通俗一点地说就是不需要为训练集提供对应类别标签的学习方法非监督学习主要分为两种:聚类和降维所以下面聊聊几种聚类算法聚类问题聚类是指把相似的对象通过静态分类的方法分成不同组别的子集,...原创 2019-11-13 16:41:29 · 1762 阅读 · 0 评论 -
机器学习---7.神经网络基础
基本介绍神经网络最基本的成分是神经元模型,当输入值超过了神经元的阈值,神经元就被激活了。然后通过激活函数就可以将输出值对应为0或者1。感知机感知机是由两层神经元组成,输入层接收数据,输出层经过激活函数可以输出0或者1,所以感知机能实现一些基本的逻辑运算,下面来看看其中的数学原理。感知机的数学原理公式: f(x)=sign(w∗x+b)f(x)=sign(w*x+b)f(x)=sign(w...原创 2019-10-08 21:22:22 · 302 阅读 · 0 评论 -
机器学习---6.决策树
日常生活中我们往往根据事物的一些特征对他们进行分类,比如饭菜的外观好不好看,咸度合不合适……那决策树也是这个原理,它会根据事物的每一个属性进行一次测试,然后分类,最后在叶子节点上就是最终分出的类。决策树原理好看不好看适中不合适便宜昂贵食物的外观口感价格美食普通再思考告辞类似于上面的图,决策树就是将事物的每一种属性都拿来进行一次测试分类。决策树的分类过程读取数据集计算数据集的信息熵遍...原创 2019-10-06 16:03:32 · 278 阅读 · 0 评论 -
机器学习---5.支持向量机(SVM)
简单介绍支持向量机(SVM)是一种很常用的分类算法,它的强大之处在于它不仅可以很好的划分线性可分的数据,对于线性不可分的数据它也能在高维度中找到一个合适的超平面很好的划分。因为它一般用于二分类问题,所以其实说简单点就是找到一个合适的平面,将两种类别的数据分开同时要保证离超平面最近的数据都要尽可能地远离超平面。有点拗口?简单画个图举个例子离超平面最近的两个点都要尽可能地远离超平面,就是右边那个...原创 2019-10-04 22:09:23 · 257 阅读 · 0 评论 -
机器学习---4.k-近邻(knn)
k-近邻算法也算是分类模型中比较简单的算法之一,把它的思想简单概述一下就是测量不同特征值之间的距离由此进行分类,现在有个大概的思想再来讲原理和实现。k-近邻算法knn的优缺点:优点精度高,对异常值不敏感……缺点计算的复杂度高关于距离的计算问题我们平时是如何计算距离的呢?根据两点之间直线最短的原理,那就连一条直线去测量就好了,这就是我们最常用的度量方法,也叫欧式距...原创 2019-10-02 23:06:02 · 305 阅读 · 0 评论 -
LSTM解决一个评论文本三分类问题
起因有个研究生小姐姐需要我帮她做一个用神经网络对评论数据进行分类的模型,要用lstm算法,我当然是爽快的答应了。拿到了数据集,看了一下,是这个样子然后小姐姐说只要先对一列标签分类就好,可以三个标签分开分类开始解决问题1.数据处理首先嘛既然是要分类就要最先想想输入输出,输出肯定是三种不同的标签,比如对A标签,就是输出A0,A1,A2。那输入是什么呢?用一段中文输入?那计算机也不能理...原创 2019-09-26 17:23:39 · 4542 阅读 · 7 评论 -
机器学习---3.逻辑回归
讲了回归,就不得不提到Logistic Regression有的人叫它逻辑回归,也有人叫对数几率回归(西瓜书上的叫法)提到逻辑回归,就相当于打开了一个新世界的大门,在之前我们只能通过一堆数据,预测某个未知值的值,这类问题也可以叫回归问题。今天这个小可爱虽然它叫逻辑回归,但是如果你以为它是用来解决回归问题的,那就大错特错了,它可是用来解决分类问题的哦,所以有了它我们就不再只能依赖数据得到数据了,...原创 2019-09-25 00:15:25 · 348 阅读 · 0 评论 -
机器学习---2.多变量的回归问题
昨天讲了线性回归,今天接着来讲讲它的兄弟-----多元回归与非线性回归多元回归:自变量有不止一个,最后来预测一个结果非线性回归:函数就不是简单的都是一次项,引入了高阶项使函数更能完美拟合得到准确率更高的预测值首先引入一个学生的身高体重数据集来回顾昨天的一元线性回归训练集序号身高(m)体重(kg)10.861220.961531.1220...原创 2019-09-22 21:21:13 · 2652 阅读 · 0 评论 -
机器学习 --- 1.线性回归
今天我们来开始入门机器学习,简单介绍一下线性回归模型线性回归是线性模型,例如,假设输入变量(x)和单个输出变量(y)之间存在线性关系的模型。更具体地,可以根据输入变量(x)的线性组合来计算输出变量(y)。所以我们希望算法学习假设的参数,以便能够建立方程进行预测 该方程以特征和参数作为输入,并预测其值作为输出。要弄明白线性回归就要从背后的数学原理开始讲起1.数学原理从初中我们就开始接触方...原创 2019-09-21 20:25:09 · 535 阅读 · 0 评论