tarjan算法求无向图的割点与桥
一篇tarjan算法求割点与桥的完整的解释,写的真的好认真
- 以下代码来自kuangbin的模板
4.5 图的割点、桥和双连通分支的基本概念
[点连通度与边连通度] 在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以
及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合。
一个图的点连通度的定义为,最小割点集合中的顶点数。
类似的,如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为
割边集合。一个图的边连通度的定义为,最小割边集合中的边数。
[双连通图、割点与桥]
如果一个无向连通图的点连通度大于1,则称该图是点双连通的(point biconnected),简称
双连通或重连通。一个图有割点,当且仅当这个图的点连通度为1,则割点集合的唯一元素
被称为割点(cut point),又叫关节点(articulation point)。
如果一个无向连通图的边连通度大于1,则称该图是边双连通的(edge biconnected),简称双
连通或重连通。一个图有桥,当且仅当这个图的边连通度为1,则割边集合的唯一元素被称
为桥(bridge),又叫关节边(articulation edge)。
可以看出,点双连通与边双连通都可以简称为双连通,它们之间是有着某种联系的,下文中
提到的双连通,均既可指点双连通,又可指边双连通。
[双连通分支]
在图G 的所有子图G’ 中,如果G’ 是双连通的,则称G’ 为双连通子图。如果一个双连
kuangbin 138
ACM Template of kuangbin
通子图G’ 它不是任何一个双连通子图的真子集,则G’ 为极大双连通子图。双连通分支
(biconnected component),或重连通分支,就是图的极大双连通子图。特殊的,点双连通分
支又叫做块。[求割点与桥]
该算法是R.Tarjan 发明的。对图深度优先搜索,定义DFS(u) 为u 在搜索树(以下简称为
树)中被遍历到的次序号。定义Low(u) 为u 或u 的子树中能通过非父子边追溯到的最早的
节点,即DFS 序号最小的节点。根据定义,则有:
Low(u)=Min DFS(u) DFS(v) (u,v) 为后向边(返祖边) 等价于DFS(v)<DFS(u) 且v 不为u
的父亲节点Low(v) (u,v) 为树枝边(父子边) 一个顶点u 是割点,当且仅当满足(1) 或(2)
(1) u 为树根,且u 有多于一个子树。(2) u 不为树根,且满足存在(u,v) 为树枝边(或称父子
边,即u 为v 在搜索树中的父亲),使得DFS(u)<=Low(v)。
一条无向边(u,v) 是桥,当且仅当(u,v) 为树枝边,且满足DFS(u)<Low(v)。
[求双连通分支]
下面要分开讨论点双连通分支与边双连通分支的求法。
对于点双连通分支,实际上在求割点的过程中就能顺便把每个点双连通分支求出。建立一个
栈,存储当前双连通分支,在搜索图时,每找到一条树枝边或后向边(非横叉边),就把这条
边加入栈中。如果遇到某时满足DFS(u)<=Low(v),说明u 是一个割点,同时把边从栈顶一
个个取出,直到遇到了边(u,v),取出的这些边与其关联的点,组成一个点双连通分支。割点
可以属于多个点双连通分支,其余点和每条边只属于且属于一个点双连通分支。
对于边双连通分支,求法更为简单。只需在求出所有的桥以后,把桥边删除,原图变成了多
个连通块,则每个连通块就是一个边双连通分支。桥不属于任何一个边双连通分支,其余的
边和每个顶点都属于且只属于一个边双连通分支。
[构造双连通图]
一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删
除这些桥边,剩下的每个连通块都是一个双连通子图。把每个双连通子图收缩为一个顶点,
再把桥边加回来,最后的这个图一定是一棵树,边连通度为1。
统计出树中度为1 的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加
(leaf+1)/2 条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。具体方
法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到
祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公
共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2 次,把所有点收缩到了一
起。
/*
* 求无向图的割点和桥
* 可以找出割点和桥,求删掉每个点后增加的连通块。
* 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重
*/
const int MAXN = 10010;
const int MAXM = 100010;
struct Edge {
int to, next;
bool cut;//是否为桥的标记
}edge[MAXM];
int head[MAXN], tot;
int Low[MAXN], DFN[MAXN];
int Stack[MAXN];
int Index, top;
bool Instack[MAXN];
bool cut[MAXN];//每个顶点是否为割的标记
int add_block[MAXN];//删除一个点后增加的连通块
int bridge;
void addedge(int u, int v) {
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].cut = false;
head[u] = tot++;
}
//当前顶点u,u的父亲节点pre
void Tarjan(int u, int pre) {
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
//儿子节点
int son = 0;
int pre_cnt = 0; //处理重边,如果不需要可以去掉
for (int i = head[u]; i != −1; i = edge[i].next) {
v = edge[i].to;
//v是u的父亲节点并且重边的个数为1,重边的个数++
//上面说明找到了一条重边, 处理重边
if (v == pre && pre_cnt == 0) { pre_cnt++; continue; }
//第一种情况, 下一条边未被DFS过
//son++
//递归Tarjan
//更新low[]数组
//low[u]=min(low[u],low[v])
//low[i]代表顶点i不经过父节点可以达到的最早的祖先节点
if (!DFN[v]) {
son++;
Tarjan(v, u);
if (Low[u] > Low[v])Low[u] = Low[v];
//桥
//一条无向边(u,v) 是桥,当且仅当(u,v) 为树枝边,且满足DFS(u) < Low(v)。
if (Low[v] > DFN[u]) {
bridge++;
edge[i].cut = true;
edge[i ^ 1].cut = true;
}
//割点
//一个顶点u 是割点,当且仅当满足(1) 或(2) (1) u 为树根,且u有多于一个子树。
//(2) u 不为树根,且满足存在(u,v) 为树枝边(或称父子边,
//即u 为v 在搜索树中的父亲),使得DFS(u)<=Low(v)
//u是割点, 当且仅当u不是第一个DFS的节点(根节点)并且其某个子树节点无法通过u遍历到u的祖先节点
if (u != pre && Low[v] >= DFN[u]) {//不是树根
cut[u] = true;
add_block[u]++;
}
}
//找到祖先节点
else if (Low[u] > DFN[v])
Low[u] = DFN[v];
}
//树根,分支数大于1, 必然是割点
if (u == pre && son > 1)cut[u] = true;
//增加的联通块的个数
if (u == pre)add_block[u] = son - 1;
Instack[u] = false;
top--;
}