300. 最长递增子序列 动态规划O(n2) 贪心+二分 O(nlogn)

思路

  1. 动态规划,定义状态 d p [ i ] dp[i] dp[i]代表以 n u m s [ i ] nums[i] nums[i]结尾的最长递增子序列的长度,这样的话 d p [ i ] dp[i] dp[i]和其子问题 d p [ k ] , 0 < = k < i dp[k],0<=k<i dp[k],0<=k<i便产生了联系、
    • 状态转移方程 d p [ i ] = m a x ( d p [ k ] + 1 ) , 0 < = k < i i f ( n u m s [ i ] > n u m s [ k ] ) dp[i]=max(dp[k]+1),0<=k<i if(nums[i]>nums[k]) dp[i]=max(dp[k]+1),0<=k<iif(nums[i]>nums[k])
    • 时间复杂度 O ( n 2 ) O(n^2) O(n2)
    • 空间复杂度 O ( n ) O(n) O(n)
  2. 官方给的 O ( n l o g n ) O(nlogn) O(nlogn)的解法,采用贪心和二分。
    • 维护一个 d [ ] d[] d[]数组, d [ i ] d[i] d[i]代表长度为 i i i的最长递增子序列的最后一个数字的值, l e n len len代表当前得到的最长序列的长度。这样做是基于贪心的思想,我们希望我们的序列的数字增长的尽可能的慢,这样的话我们后面就可以尽可能多的增加数字。
    • 如果当前的数值 n u m s [ i ] > d [ l e n ] nums[i]>d[len] nums[i]>d[len],我们更新 d [ + + l e n ] = n u m s [ i ] d[++len]=nums[i] d[++len]=nums[i],否则,我们需要更新 d d d数组前面的数值, d [ ] d[] d[]数组在这里是单调递增的,如果 d [ ] d[] d[]数组不是单调递增的,假设一个长度为 n n n的递增子序列和一个长度为 n + 1 n+1 n+1的递增子序列,且有 d [ n + 1 ] < d [ n ] d[n+1]<d[n] d[n+1]<d[n],并且我们知道 d [ n ] , d [ n + 1 ] d[n],d[n+1] d[n],d[n+1]分别代表着长度为 n n n n + 1 n+1 n+1的递增子序列,那么 d [ n + 1 ] d[n+1] d[n+1]的倒数第二个数字肯定在 d [ n ] d[n] d[n]这个数字要小, d [ n + 1 ] 和 d [ n ] d[n+1]和d[n] d[n+1]d[n]之间只有一个数字长度的差距, d [ n ] d[n] d[n]显然应该不为 d [ n ] d[n] d[n]而为 d [ n + 1 ] d[n+1] d[n+1]所代表序列的倒数第二个数字。官方题解的证明。我们可以用二分查找的方式找到我们的满足条件 d [ i − 1 ] < = n u m s [ j ] < n u m s [ i ] d[i-1]<=nums[j]<nums[i] d[i1]<=nums[j]<nums[i] i i i,我们去更新这个 d [ i ] d[i] d[i]维护好 d [ ] d[] d[]数组,这样最后的 d [ l e n ] d[len] d[len]就是我们的答案了。

时间复杂度 O ( n 2 ) O(n^2) O(n2),空间复杂度 O ( n ) O(n) O(n)

// 时间复杂度$O(n^2)$
class Solution {
public:
    vector<int>res;
    int lengthOfLIS(vector<int>& nums) {
        int n=nums.size();
        if(n==0){
            return 0;
        }
        res.resize(n,1);
        // res[0]=1;
        for(int i=1;i<n;i++){
            for(int j=0;j<i;j++){
                if(nums[i]>nums[j])
                    res[i]=max(res[i],res[j]+1);
            }
        }
        int ans=res[0];
        for(int i=1;i<n;i++){
            ans=max(ans,res[i]);
        }
        return ans;
    }
};

// 时间复杂度O(nlogn)
class Solution {
public:
    vector<int>d;
    int len;
    int lengthOfLIS(vector<int>& nums) {
        int n=nums.size();
        if(n==0){
            return 0;
        }
        d.resize(n+1,0);
        len=1;                  // 当前的最长的单调递增子序列的长度
        d[0]=0,d[1]=nums[0];
        for(int i=1;i<n;i++){
            if(nums[i]>d[len]){
                d[++len]=nums[i];
            }
            else{
                int left=1,right=len;
                int mid;
                // 怎么找到数组中满足条件nums[i-1]<d[j]<=nums[i]的i
                int pos=0;
                while(left<=right){
                    mid=(left+right)/2;
                    if(d[mid]<nums[i]){
                        pos=mid;
                        left=mid+1;
                    }
                    else{
                        right=mid-1;
                    }
                }
                // 官方题解这里的写法不错
                d[pos+1]=nums[i];
            }
        }
        return len;
    }
};
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值