932. 漂亮数组 分治策略,思维题

932. 漂亮数组
  1. 分治的思想,怎么解决?

  2. 首先一个数组a[]是漂亮数组,代表n个元素1,2,…,n的排列满足

    任意的i,j,k,i<k<j, 都不存在 2 ∗ a [ k ] = a [ i ] + a [ j ] 2*a[k]=a[i]+a[j] 2a[k]=a[i]+a[j]

  3. 首先我们注意到,上面式子的左边必定是偶数,那么如果右边必定是奇数,满足条件

  4. 怎么满足左边必定是偶数,右边必定是奇数将1,2,3,…,n这n个数字分成两个部分,左边全放奇数,右边全放偶数,这样就可以,这样的话如果i在左边,j在右边,那么对于这样的k,我们的构造必定满足条件。

    1,2,3,…,n这么多的数字中有(n+1)/2个奇数,有n/2个偶数,那么左边 放(n+1)/2个奇数,右边放n/2个偶数

    现在还有一种情况可能不满足条件,那就是i,j指示的三个数字在一边,都在左边或者都在右边,都在右边的话可能会出现问题

    如何解决这两种情况?

    如果左右两边也递归的满足这种性质?是不是就可以解决?

  5. 如果 a [ i ] + a [ j ] = 2 ∗ a [ k ] a[i]+a[j]=2*a[k] a[i]+a[j]=2a[k],那么 k 1 ∗ a [ i ] + b + k 1 ∗ a [ j ] + b = 2 ∗ ( k 1 ∗ a [ k ] + b ) k1*a[i]+b+k1*a[j]+b=2*(k1*a[k]+b) k1a[i]+b+k1a[j]+b=2(k1a[k]+b), 这是一个线性关系。

  6. 那么我们最优两边的奇数和偶数分别映射到1,2,…,(n+1)/2和1,2,…,(n)/2这两个数上面去。

    也就是左边的奇数映射到—(左边的奇数+1)/2上面去右边的偶数映射到—(右边的偶数)/2上面去,这样的话就递归的变成了上面的问题。

    佬题解1

    佬题解2

    佬题解3

    class Solution {
    public:
        // 1. 判断排列
        // 2. 
        map<int,vector<int>>mp;
        vector<int> solve(int n){
            if(!mp.count(n)){
                vector<int>left=solve((n+1)/2);
                vector<int>right=solve(n/2);
                for(auto&val:left){
                    val=2*val-1;
                }
                for(auto&val:right){
                    val=2*val;
                }
                mp[n].insert(mp[n].end(),left.begin(),left.end());
                mp[n].insert(mp[n].end(),right.begin(),right.end());
            }
            return mp[n];
        }
        vector<int> beautifulArray(int N) {
            mp[1]=vector<int>({1});
            solve(N);
            return mp[N];
        }
    };
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值