根据维基百科的定义:
插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列。每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置。如此迭代直到全部元素有序。
归并排序进行如下迭代操作:首先将原始序列看成 N 个只包含 1 个元素的有序子序列,然后每次迭代归并两个相邻的有序子序列,直到最后只剩下 1 个有序的序列。
现给定原始序列和由某排序算法产生的中间序列,请你判断该算法究竟是哪种排序算法?
输入格式:
输入在第一行给出正整数 N (≤100);随后一行给出原始序列的 N 个整数;最后一行给出由某排序算法产生的中间序列。这里假设排序的目标序列是升序。数字间以空格分隔。
输出格式:
首先在第 1 行中输出Insertion Sort表示插入排序、或Merge Sort表示归并排序;然后在第 2 行中输出用该排序算法再迭代一轮的结果序列。题目保证每组测试的结果是唯一的。数字间以空格分隔,且行首尾不得有多余空格。
输入样例 1:
10
3 1 2 8 7 5 9 4 6 0
1 2 3 7 8 5 9 4 6 0
输出样例 1:
Insertion Sort
1 2 3 5 7 8 9 4 6 0
输入样例 2:
10
3 1 2 8 7 5 9 4 0 6
1 3 2 8 5 7 4 9 0 6
输出样例 2:
Merge Sort
1 2 3 8 4 5 7 9 0 6
首先我们需要定义两个数组来存放原来的元素和排序之后的元素,然后进行判断是插入排序还是归并排序.
然后我们需要找出破坏队形的那个元素,并记录下来。
通过判断这个元素下标和原来数组下标的元素相比较,可以判断是否是插入还是归并。
我们来看一下代码
具体实现如下
代码注释很清晰
希望大家能够有所收获
#include<iostream>
#include<algorithm>
using namespace std;
int a[200],b[200]; //a是原数组,b是中间序列数组;
int main()
{
int N,j,i;
cin>>N;
for( i=0;i<N;i++)
scanf("%d",&a[i]);
for(i=0;i<N;i++)
scanf("%d",&b[i]);
int flag=-1,tag=1,count=0,index;
for( i=1;i<N;i++){//判断是归并排序还是插入排序
if(count<1){
if(b[i]<b[i-1])
{
tag=0;
index=i;//找到破坏队形元素的下标
count++;
}
}
if(tag==0)
{
if(a[i]==b[i])//相等则是插入排序,否则是归并排序
flag=1;
else{
flag=0;
break;
}
}
}
if(flag){//插入排序
cout<<"Insertion Sort"<<endl;
sort(b,b+index+1);//c++排序函数,从b到b+1进行排列
for(j=0;j<N-1;j++)
cout<<b[j]<<" ";
cout<<b[j]<<endl;//最后一个元素后面没有空格
}
else {//归并排序
cout<<"Merge Sort"<<endl;
int cnt1=1,cnt2=1,cnt,m=0,z=0;
for(i=1;i<N;i++)//判断头两个相邻非递减序列的长度,cnt1和cnt2;
{
if(m<1){
if(b[i]>=b[i-1])
cnt1++;//第一个有序序列的长度
else
m++;//退出找第一个有序序列的循环
}
else{
if(b[i]>=b[i-1])
cnt2++;//同上
else
break;
}
}
cnt=cnt1<cnt2?cnt1:cnt2;//取cnt1和cnt2的较小值,归并排序选最小的
int x=N/(2*cnt)*(2*cnt);//末尾还有元素
while(z+2*cnt<=N){//进行两倍序列排序
sort(b+z,b+z+2*cnt);
z+=2*cnt;
}
if(N%(2*cnt)!=0){//末尾元素需要处理
sort(b+x,b+N);
}
for( j=0;j<N-1;j++)
cout<<b[j]<<" ";
cout<<b[j]<<endl;
}
return 0;
}