ChatGPT从入门到精通学习路线 全面AI时代就在转角,道路已经铺好了“局外人”or“先行者”就在此刻等你决定1、对ChatGPT感兴趣并希望有人手把手教学的新手2、希望了解GPT各类应用抓住未来风口3、希望提升竞争能力,不被AI淘汰的职场人4、想提升学习效率的学生和各职场人士
ChatGPT办公自动化实战 工作忙,顾不上对文件进行分类整理,导致电脑中的文件非常杂乱,难以找到想要的文件,大大影响了我的工作效率。操作流程「提出Prompt-> 获取Python代码 -> 实现办公自动化」日常办公时经常会创建和下载各种文件,如文档、表格、PDF、图片等等。如果电脑能帮我自动对文件夹进行整理就太棒了!ChatGPT自动化文件管理场景导入。大家私信我,交流获取学习资料。如何用ChatGPT来办公。
ChatGPT 指令知识要点 类场景下ChatGPT指令,帮助真正学会和ChatGPT对话,提供日常工作效率。指令越精确,ChatGPT回答会越到位。大家可以关注,并私信有机会领取学习资料。ChatGPT指令知识要点。
ChatGPT从入门到精通,深入认识Prompt 你作为一名专业的健身教练和营养师,我想要减肥,目标是一个月内减重5KG,你帮我制定一个详细的周健身计划,包括饮食规划。我的身高是175,体重是75KG,控制在超过500字。
ChatGPT从入门到精通,引入AIGC时代变更,一站式掌握办公自动化/爬虫/数据分析和可视 全面AI时代就在转角,道路已经铺好了“局外人”or“先行者”就在此刻等你决定 ,通过ChatGPT一站式掌握办公自动化/爬虫/数据分析和可视化图表制作,BAT大厂技术专家,实战ChatGPT项目。下单即终身学习,提供全部资料,帮助解决ChatGPT中学习遇到的问题。全面AI时代就在转角,道路已经铺好了“局外人”or“先行者”就在此刻等你决定。1、对ChatGPT感兴趣并希望有人手把手教学的新手。3、希望提升竞争能力,不被AI淘汰的职场人。4、想提升学习效率的学生和各职场人士。
知识图谱实战(04):基于知识图谱的搜索引擎系统 一、项目介绍适用人群知识图谱工程师、NLP工程师、搜索工程师,希望进入人工智能领域的同学你将会学到您将系统学习整个知识图谱框架体系、落地方法、互联网各行业场景下应用、工业界项目落地实战,深入看看互联网行业知识图谱的应用。掌握知识图谱领域知识点掌握知识图谱互联网大厂应用领域及其效果分析掌握图数据neo4j使用及其应用案例熟练使用neo4j构建知识图谱模型掌握知识图谱中NLP工业界常见的实现方法深度熟练掌握知识图谱在搜索系统工业界应用课程简介。
知识图谱实战(03):python操作neo4j实战 Neo4j 提供了一个Python版本的驱动包,用来连接Neo4j数据库,从而完成图数据库的增删改查操作。1、安装指定版本的驱动包(我们这里采用Neo4.x版本,同neo4j安装包保持一致即可)《艾文教编程》Python操作Neo4j例子(py2neo版本).ipynb。Python操作Neo4j例子(py2neo版本).ipynb。Python操作Neo4j例子(py2neo版本)Python操作Neo4j例子(官方版本)Python操作neo4j图数据库代码实战。neo4j 版本查看(ipython)
知识图谱实战(02):什么是图数据库 支持在线导入,速度在10万/秒级别,支持格式丰富:CSV、TXT、Json,支持从HDFS导入并兼任其各类压缩格式,支持从传统关系型数据库导入,包括MySQL、Oracle、PostgreSQL、SQL-Server等,支持从消息队列导入。作为图数据库的底层应用,知识图谱可为多种行业提供服务,应用场景涉及电商、金融、法律、医疗、智能家居等多个领域决策系统、推荐系统、智能问答等。支持二级索引、范围索引、联合索引、全文索引,允许精确匹配查询、范围查询、全文检索等,均为原生实现不依赖第三方系统,不支持空间检索。
知识图谱实战(01):从0-1搭建图片服务器 在实际开发中,我们会有很多处理不同功能的服务器1、 应用服务器:负责部署我们的应用2、数据库服务器:运行我们的数据库3、文件服务器:负责存储用户上传文件的服务器(例如:图片/js/css等静态资源)1、图片服务器专门为图片读写操作优化的独立服务器。2、Web 服务器通过 Web 服务器,用户可以访问静态网页、Web应用程序、数据库,或者上传下载图片以及其他多媒体内容。服务器中分离出来。3、图片服务器和Web服务器分离如果网站存在大量图片读写操作,把图片服务分离出来,建立独立的图片服务器。
《零基础入门学Python》 matplotlib数据可视化入门 Matplotlib 也支持以脚本的形式嵌入到 IPython shell、Jupyter 笔记本、web 应用服务器中使用(只需几行代码即可生成绘图,直方图,条形图,误差图,散点图等)。show()启动一个事件循环,查找所有当前活动的图形对象,并打开一个或多个显示图形的交互式窗口。如果将文本数据与图表数据相比较,人类的思维模式更适合于理解后者,原因在于图表数据更加直观且形象化,这种使用图表来表示数据的方法被叫做数据可视化。预测销量:对产品销量的影响因素进行分析,可以预测出产品的销量走势。
跟艾文学编程 《零基础入门学Python》Jupyter Notebook安装和使用 上述安装没问题的话,在命令行输入如下jupyter notebook命令就会自动弹出浏览器窗口打开Jupyter Notebook,如下所示。选项,会出现如下界面,然后记住取消上面的对勾选项。2、安装Jupyter Notebook扩展包。2、jupyter notebook界面介绍。1、安装Jupyter扩展包的环境。,执行本单元代码,并跳转到下一单元。,执行本单元代码,留在本单元。Jupyter 扩展安装。Jupyter 扩展安装。# 安装jupyter。Jupyter 使用。markdown演示。
跟艾文学编程《零基础数据学Python》(02)pyecharts数据可视化 ECharts,一个使用 JavaScript 实现的开源可视化库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,Safari等),底层依赖轻量级的矢量图形库 ZRender,提供直观,交互丰富,可高度个性化定制的数据可视化图表。输入pip install pyecharts-1.9.1-py3-none-any.whl 即可。作者: 艾文,计算机硕士学位,企业内训讲师和金牌面试官,公司资深算法专家,现就职BAT一线大厂。
跟艾文学编程《零基础入门学Python》(01)基于Plotly的动态可视化绘图 本课程所有的项目案例的数据包括: 泰坦尼克号的数据、iris 数据、航班数据、金融累的数据,通过这些数据分析,可以 快速的让大家掌握项目中plotly 进行数据绘图分析。Plotly是一个非常著名且强大的开源数据可视化框架,它通过构建基于浏览器显示的web形式的可交互图表来展示信息,可创建多达数十种精美的图表和地图,通过观察数据,对age进行直方图的展示,实际age 数据存在missing,先用dropna函数删除missing 的数据,否则无法绘制 出图形。都可以通过 这种图表观察到这种数据。
跟艾文学编程《零基础入门学Python》PyCharm 安装 它具有对JavaScript,TypeScript和Node.js的内置支持,并具有丰富的其他语言(例如C++,C#,Java,Python,PHP,Go)和运行时(例如.NET和Unity)扩展的生态系统。PyCharm是一种Python IDE(Integrated Development Environment,集成开发环境),带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试、版本控制。PyCharm工具的使用。
跟艾文学编程《零基础入门学Python》Anaconda 安装 Anaconda 是一个用于科学计算的 Python 发行版,支持 Linux, Mac, Windows, 包含了众多流行的科学计算、数据分析的 Python 包。博客:https://edu.csdn.net/lecturer/894?作者:艾文,计算机硕士学位,企业内训讲师和金牌面试官,公司资深算法专家,现就职BAT一线大厂。点击“archive”按钮后出现下载的软件(选择满足自己操作系统的软件即可)恭喜你,正式进入Python语言的学习。Anaconda下载。Anaconda下载。
跟艾文学编程《零基础入门学Python》(7)pandas数据分析 很多时间序列是有固定频率(fixed frequency)的,意思是数据点会遵照某种规律定期出现,比如每15秒,每5分钟,或每个月。时间序列也可能是不规律的(irregular),没有一个固定的时间规律。每一个时间戳都是看做是一个特定的开始时间(例如,在放入烤箱后,曲奇饼的直径在每一秒的变化程度)1.5.1 日期和时间的数据类型。pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库。每列都有不同的数值类型(数字,字符串,布尔)。
跟艾文学编程《零基础入门学Python》(6)numpy数值计算 目标: 处理多维度同类型数据的数组,在numpy中维度我们可以axes来表示,创建对象类型: numpy.ndarray。作者: 艾文,计算机硕士学位,企业内训讲师和金牌面试官,公司资深算法专家,现就职BAT一线大厂。argmax 返回的是最大数的索引,argmax 有个参数axis,默认0,表示第几维的最大数值。不同维度之间的转化,高纬度情况下,通过numpy这个函数非常重要,这块图像处理的时候。通过reshape 数组,可以改变array的数据结构,这里,创建 3*3 的矩阵。