PullToRefresh上拉加载下拉刷新GridView和ListView

小武:

                        PullToRefresh上拉加载下拉刷新GridView和ListView想必大家都了解到了:

要关联依赖包library包**加入相应的图片哦。

1.首先看主布局文件:activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:tools="http://schemas.android.com/tools"
    android:layout_width="match_parent"
    android:layout_height="match_parent" >

     <com.handmark.pulltorefresh.library.PullToRefreshGridView
        xmlns:ptr="http://schemas.android.com/apk/res-auto"
        android:id="@+id/gridView"
        android:layout_height="fill_parent"
        android:layout_width="fill_parent"
        android:numColumns="auto_fit"
        android:verticalSpacing="1dp"
        android:horizontalSpacing="1dp"
        android:columnWidth="100dp"
        android:stretchMode="columnWidth"
        android:gravity="fill"
        ptr:ptrMode="both"
        ptr:ptrDrawable="@drawable/icon" />

</RelativeLayout>
2.主函数  MainActivity.class 在主函数中要注意下拉刷新上拉加载的停止方法和上拉方法、下拉方法

import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.ArrayList;

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.view.Gravity;
import android.widget.TextView;

import com.example.ynf_pulltorefreash.Data1.MyData;
import com.google.gson.Gson;
import com.handmark.pulltorefresh.library.PullToRefreshBase;
import com.handmark.pulltorefresh.library.PullToRefreshBase.OnRefreshListener2;
import com.handmark.pulltorefresh.library.PullToRefreshGridView;

public class MainActivity extends Activity {

	private PullToRefreshGridView gridview;
	static final int MENU_SET_MODE = 0;
	private ArrayList<MyData> data;
	private MyBaseAdapter adapter;

	@SuppressWarnings({ "unchecked", "rawtypes" })
	@Override
	protected void onCreate(Bundle savedInstanceState) {
		super.onCreate(savedInstanceState);
		setContentView(R.layout.activity_main);
		
		gridview = (PullToRefreshGridView) findViewById(R.id.gridView);
		
		gridview.setOnRefreshListener(new OnRefreshListener2() {
			@Override
			public void onPullDownToRefresh(PullToRefreshBase refreshView) {
				// TODO Auto-generated method stub
				MyAsyncTask task = new MyAsyncTask();
		
				task.execute("http://m.yunifang.com/yunifang/mobile/goods/getall?random=87749&encode=ac6bd45b8f50b626a6843b294af8fed5");
			}

			@Override
			public void onPullUpToRefresh(PullToRefreshBase refreshView) {
				// TODO Auto-generated method stub
				MyAsyncTask task = new MyAsyncTask();
				task.execute("http://m.yunifang.com/yunifang/mobile/goods/getall?random=87749&encode=ac6bd45b8f50b626a6843b294af8fed5");
			}
		});
		/**
		 * 未操作时显示的TextView,也可以用图片
		 * 居中
		 */
		TextView tv = new TextView(this);
		tv.setGravity(Gravity.CENTER);
		tv.setText("空视图, 请下拉或上拉来添加条目");
		gridview.setEmptyView(tv);

	}

	class MyAsyncTask extends AsyncTask<String, Void, String> {

		@Override
		protected String doInBackground(String... params) {

			try {
				URL url = new URL(params[0]);
				HttpURLConnection openConnection = (HttpURLConnection) url
						.openConnection();
				openConnection.setConnectTimeout(5000);
				openConnection.setReadTimeout(5000);
				int responseCode = openConnection.getResponseCode();
				if (responseCode == 200) {
					InputStream inputStream = openConnection.getInputStream();
					StreamUtils streamUtils = new StreamUtils();
					String parseStream = streamUtils.parseSteam(inputStream);
					System.out.println("-----------parseStream------------"
							+ parseStream);
					return parseStream;
				}
			} catch (IOException e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			}
			return null;
		}

		@Override
		protected void onPostExecute(String result) {
			super.onPostExecute(result);
			Gson gson = new Gson();
			Data1 fromJson = gson.fromJson(result, Data1.class);
			System.out.println("-----------fromJson------------" + fromJson);
			data = fromJson.getData();
			gridview.setAdapter(adapter = new MyBaseAdapter(MainActivity.this,
					data));
			gridview.onRefreshComplete();//停止刷新
		}
	}
	
}

3. 适配器是这样的 MyBaseAdapter


import java.util.ArrayList;

import com.example.ynf_pulltorefreash.Data1.MyData;
import com.lidroid.xutils.BitmapUtils;

import android.content.Context;
import android.view.View;
import android.view.ViewGroup;
import android.widget.BaseAdapter;
import android.widget.ImageView;
import android.widget.TextView;

public class MyBaseAdapter extends BaseAdapter {
	private Context context;
	private ArrayList<MyData> list;

	public MyBaseAdapter(Context context,ArrayList<MyData> list) {
		// TODO Auto-generated constructor stub
		this.context=context;
		this.list=list;
	}
	@Override
	public int getCount() {
		// TODO Auto-generated method stub
		return list.size();
	}

	@Override
	public Object getItem(int position) {
		// TODO Auto-generated method stub
		return null;
	}

	@Override
	public long getItemId(int position) {
		// TODO Auto-generated method stub
		return 0;
	}

	@Override
	public View getView(int position, View convertView, ViewGroup parent) {
		// TODO Auto-generated method stub
		View view = View.inflate(context, R.layout.list_base, null);
		ImageView base_im = (ImageView) view.findViewById(R.id.base_im);
		TextView base_name = (TextView) view.findViewById(R.id.base_name);
		base_name.setText(list.get(position).goods_name);
		BitmapUtils bitmapUtils=new BitmapUtils(context);
		bitmapUtils.display(base_im, list.get(position).goods_img);
		return view;
	}

}


4.Bean实体类 Data1.class

import java.util.ArrayList;

public class Data1 {
	public ArrayList<MyData> data;
	
	
	public ArrayList<MyData> getData() {
		return data;
	}

	public void setData(ArrayList<MyData> data) {
		this.data = data;
	}

	public class MyData{
		public String goods_img;
		public String goods_name;
		public String market_price;
		public String shop_price;
		public String sales_volume;
		@Override
		public String toString() {
			return "MyData [goods_img=" + goods_img + ", goods_name="
					+ goods_name + ", market_price=" + market_price
					+ ", shop_price=" + shop_price + ", sales_volume="
					+ sales_volume + "]";
		}
		
	}

	@Override
	public String toString() {
		return "Data1 [data=" + data + "]";
	}
	
	
}

5.工具类也写下吧 StreamUtils.class


import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;

public class StreamUtils {
	public static String parseSteam(InputStream inputStream) {
		try {
			// 定义一个字节数组输出流
			ByteArrayOutputStream arrayOutputStream = new ByteArrayOutputStream();
			// 定义一个字节数组
			byte[] buffer = new byte[1024];
			// 定义初始长度
			int len = 0;
			while ((len = inputStream.read(buffer)) != -1) {
				// 将读的内容,写到字节数组输出流中
				arrayOutputStream.write(buffer, 0, len);
			}
			// 将字节输出流转成字符串
			return arrayOutputStream.toString("utf-8");
			// utf-8 大小写都可以,gbk 必须大写
		} catch (IOException e) {
			e.printStackTrace();
		}
		return null;
	}
}

6.适配器的布局 list_base.xml


<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    android:orientation="vertical" >

    <ImageView
        android:id="@+id/base_im"
        android:layout_width="80dp"
        android:layout_height="80dp"
        android:src="@drawable/ic_launcher" />

    <TextView
        android:id="@+id/base_name"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="TextView" />

</LinearLayout>

这样就可以啦,希望这个小案例可以帮助大家

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值