python 对矩阵的初等变换

def RandInt(i,j):
	if i==0:
		return random.randint(0,10000)%(j+1)
	else:
		return random.randint(0,10000)%(j-i+1)+i

def zh(a,n):
	for i in range(0,n):
		a[i] = i+1
	for i in range(1,n):
		a1 = i
		a2 = RandInt(0,i)
		tmp = a[a1]
		a[a1] = a[a2]
		a[a2] = tmp
	#print(a)
	return a

def Matrix_Trans(X):                 #矩阵转置
	XT = np.transpose(X)
	#print(XT)
	return XT

def zhihuan_R(x,m,n):                 #矩阵行置换
	# print(x)
	# print(m,n)
	x1 = [ [0] * n for i in range(m) ]
	zh1 = [0]*(n+1)
	zh1 = zh(zh1,n)
	zh1[n] = zh1[0]
	for i in range(0,n):
		t = zh1[i]
		t1 = zh1[i+1]
		for j in range(0,m):
			x1[j][t-1] = x[j][t1-1]
	return x1

def zhihuan_L(x,m,n):                #矩阵列置换
	x1 = [ [0] * n for i in range(m) ]
	zh1 = [0]*(m+1)
	zh1 = zh(zh1,m)
	zh1[m] = zh1[0]
	for i in range(0,m):
		t = zh1[i]
		t1 = zh1[i+1]
		for j in range(0,n):
			x1[t-1][j] = x[t1-1][j]
	return x1

def Matrix_Multiply(a,b,m,n,s):        #两个矩阵相乘
    
    c=[[0 for i in range(s)] for i in range(m)]
    for i in range(0,m):
        for j in range(0,s):
            c[i][j]=0
            for z in range(0,n):
                c[i][j]+=a[i][z]*b[z][j]
    #print(c)
    return c

def Matrix_Multiplication_R(a,m,n):        #矩阵的每一行分别乘不同的k
    for i in range(0,n):
        k=random.randint(2,10)
        #print(k)
        for j in range(0,m):
            a[j][i]=a[j][i]*k
    #print(a)
    return a

def Matrix_Multiplication_L(a,m,n):   #矩阵的每一列分别乘不同的k
    
    for i in range(0,m):
        k=random.randint(2,10)
        for j in range(0,n):
            a[i][j]=a[i][j]*k
    #print(a)
    return a

def Matrix_Addition_R(a,m,n):      #矩阵的某行*k加到零一行
    i=random.randint(0,n-1)
    j=random.randint(0,n-1)
    k = random.randint(2, 10)
    #print(i,j,k)
    for c in range(0,m):
        a[c][j]=a[c][j]+a[c][i]*k
    #print(a)
    return a

def Matrix_Addition_L(a,m,n):      #矩阵的某列*k加到另一列
    
    i=random.randint(0,m-1)
    j=random.randint(0,m-1)
    k = random.randint(2, 10)
    for c in range(0,n):
        a[j][c]=a[j][c]+a[i][c]*k
    #print(a)
    return a

def Vector_mul_Matrix(r,a,m,n):    #向量乘矩阵
    
    c = [[0 for i in range(n)]]
    for i in range(0, n):
        c[0][i] = 0
        for z in range(0, m):
            c[0][i] += r[0][z]*a[z][i]
    #print(c)
    return c

def Matrix_mul_Vector(R,y,m,n):       #矩阵乘向量
    
    c = [[0 for i in range(1)] for i in range(m)]
    for i in range(0, m):
        c[i][0] = 0
        for z in range(0, n):
            c[i][0] += R[i][z] * y[z][0]
    #print(c)
    return c

def Matrix_Inverse(a):           #矩阵求逆
	b = np.linalg.inv(a)
	#print(b)
	return b

需要导入的库有

import numpy
from numpy import dot
import numpy as np
import datetime
import random
import time

矩阵变换是线性代数中矩阵的一种运算形式。

线性代数中,矩阵的初等变换是指以下三种变换类型 :

(1) 交换矩阵的两行(对调i,j,两行记为ri,rj);

(2) 以一个非零数k乘矩阵的某一行所有元素(第i行乘以k记为ri×k);

(3) 把矩阵的某一行所有元素乘以一个数k后加到另一行对应的元素(第j行乘以k加到第i行记为ri+krj)。

类似地,把以上的“行”改为“列”便得到矩阵初等变换的定义,把对应的记号“r”换为“c”。

矩阵的初等行变换与初等列变换合称为矩阵的初等变换。

 

最近没时间写详细的,有需要详细解释的可私聊我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值