关于np.histogram 理解

这篇博客详细介绍了`numpy.histogram`函数的使用,包括参数`bins`和`range`的作用。`bins`可以指定直方图的间隔数或范围,不保证等宽,并且当为范围时,不包括最大值。`range`参数定义了统计数据的有效区间,排除超出范围的数据。示例代码展示了如何根据给定参数绘制直方图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接上代码:

 

numpy.histogram(abins=10range=Nonenormed=Noneweights=Nonedensity=None)

a:数组

bins;如果是整型的值,比如bins=9,那就在横轴有9个等宽的间距;如果是一个范围,比如(0,9),那将就只有8个间距,但是并不保证是等宽的,就是不一定是等宽的,看数据,而且不包括最大值5,就是范围取值为:[0,5),左闭右开。

range:表示统计的最小值和最大值,超出的就不统计,是 [min, max],左闭和右闭,     若:range为元组(tuple)或None。剔除较大和较小的离群值,给出全局范围。如果为None,则默认为(x.min(), x.max())。如果bins取值为序列,则range无效,python会基于bins的取值画图

import numpy as np
import matplotlib.pyplot as plt

cal = np.histogram([1,2,3,4,5,6,7,8,8,3,4,5,6,9],bins=np.arange(0,9),range=(0,8))
# 中bins表示的是范围,即直方图横坐标最大值,(0,9)表示只统计[0-8]不包括0,range表示统计数据中最小值和最大值

plt.hist(cal)
plt.show()

 

cal = np.histogram([1,2,3,4,5,6,7,8,8,3,4,5,6,10,10,10],bins=np.arange(0,9),range=(0,15))
plt.hist(cal)
plt.show()

 

 

 

 

 

 

 

 

https://blog.csdn.net/ToYuki_/article/details/104114925?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1.control

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值