//如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。 // // 例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7, //4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。 // // 给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。 // // 示例 1: // // 输入: [1,7,4,9,2,5] //输出: 6 //解释: 整个序列均为摆动序列。 // // // 示例 2: // // 输入: [1,17,5,10,13,15,10,5,16,8] //输出: 7 //解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。 // // 示例 3: // // 输入: [1,2,3,4,5,6,7,8,9] //输出: 2 // // 进阶: //你能否用 O(n) 时间复杂度完成此题? // Related Topics 贪心算法 动态规划 // 👍 389 👎 0
思路:
1.一次遍历,用一个标志来表示前一次出现的上升和下降情况(前后的差值),如果和现在的情况相反则加1.否则不变。
2.(官方思路,未实现) 用两个标记 up 和down 记录到之前下降和上升时最长的序列长度,一旦当前差值大于0,up = down+1否则down=up+1;
思路1:
执行耗时:0 ms,击败了100.00% 的Java用户
内存消耗:35.7 MB,击败了96.93% 的Java用户
//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public int wiggleMaxLength(int[] nums) {
int count=1;
//pre:代表前两个数的上升下降情况,1代表上升,-1代表下降,0代表初始
int pre=0;
//长度小于等于1直接返回长度
if(nums.length<=1) return nums.length;
//差值情况和之前相反则统计count,否则不统计。
int diff=0;
for (int i = 1; i < nums.length; i++) {
diff = nums[i]-nums[i-1];
if(diff>0){
if(pre==-1||pre==0){
count++;
}
pre=1;
}else if(diff<0){
if(pre==1||pre==0){
count++;
}
pre=-1;
}
}
return count;
}
}