数据预处理之标准化(Z-Score)

概念介绍

将数据按期属性(按列进行)减去其均值,并除以其标准差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。

代码示例:

import numpy as np
from sklearn.preprocessing import MinMaxScaler,StandardScaler

def autoNorm(dataset):
    x = dataset[:, 0:1]
    ##method2 Z-socre by Skit-Learn
    std = StandardScaler()
    x_std = std.fit_transform(x)
    print(x_std[2])

    ##method2 Z-socre by formula
    print(np.average(x))
    print(np.std(x))
    print((x[2]-np.mean(x))/np.std(x))

if __name__ == '__main__':
    returnMat, classLabelVector=file2matrix('F:\\datingTestSet2.txt')
    autoNorm(returnMat)

执行结果:


数据集示意:

 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShenLiang2025

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值