Hive_SQL_计算同时最大在线人数

该博客介绍了如何使用SQL,特别是窗口函数sum()over(),来计算特定日期的最大同时在线人数。通过模拟实时计数的过程,将登录和登出事件转化为行,然后进行排序并累加标记(登录+1,登出-1),最终得到最大并发数。这种方法在SparkSQL中处理千万级别数据时,耗时65秒,效率可接受。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

计算最大同时在线人数,表connection_detail记录用户每一次上线和下线时间:

user_idlogin_time(上线时间))logout_time(下线时间)dt
2131422019-01-01 12:21:222019-01-01 13:45:2120190101
4123212019-01-01 13:35:112019-01-01 16:01:4920190101

解法

大致思路 窗口函数 sum() over()

   我们先抛开sql,来考虑实时计算中我们怎么处理该问题。是不是我们会实时记录着一个变量online_cnt,当一个用户登录时加1,用户下线时减1?

   再假如我让你用python离线处理这个问题你会怎么做。应该先把登录时间和登出时间这两列打散成行,然后进行排序,最后一行行读入,当读到一个登录时间时online_cnt加1,读到登出时间时online_cnt减1。

   回到sql,我们来尝试用SQL实现上述逻辑。我们给登录时间加一个数值标记1,登出时间加标记-1。然后对排序后的数据求和该字段,最终得到我们的结果。

select
    max(max_index)
from 
(
    select
        sum(index) over(order by `timestamp`) as max_index --排序后第一行到本行的和
    from
    (
        select
            order_id,
            unix_timestamp(login_time) as `timestamp`,
            1 as index
        from
            connection_detail
        where
            dt = '20190101'
            and is_td_finish = 1
        union all
        select
            order_id,
            unix_timestamp(logout_time) as `timestamp`,
            -1 as index
        from
            connection_detail
        where
            dt = '20190101'
    )a  --将登录时间和登出时间多列成多行
)b

对于sum() over()的用法,不熟悉的同学可以看我的博客sum(…) over(…) 连续求和分析函数

该代码对于千万量级的数据sparksql计算了65秒,属于一个可以接受的范围。

原文地址:https://blog.csdn.net/u010003835/article/details/106738728?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522162789126816780366593143%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=162789126816780366593143&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~baidu_landing_v2~default-1-106738728.first_rank_v2_pc_rank_v29&utm_term=sql%E6%9C%80%E5%A4%A7%E5%90%8C%E6%97%B6%E5%9C%A8%E7%BA%BF%E4%BA%BA%E6%95%B0&spm=1018.2226.3001.4187

1.上传tar包 2.解压 tar -zxvf hive-1.2.1.tar.gz 3.安装mysql数据库 推荐yum 在线安装 4.配置hive (a)配置HIVE_HOME环境变量 vi conf/hive-env.sh 配置其中的$hadoop_home (b)配置元数据库信息 vi hive-site.xml 添加如下内容: javax.jdo.option.ConnectionURL jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true JDBC connect string for a JDBC metastore javax.jdo.option.ConnectionDriverName com.mysql.jdbc.Driver Driver class name for a JDBC metastore javax.jdo.option.ConnectionUserName root username to use against metastore database javax.jdo.option.ConnectionPassword hadoop password to use against metastore database 5.安装hive和mysq完成后,将mysql的连接jar包拷贝到$HIVE_HOME/lib目录下 如果出现没有权限的问题,在mysql授权(在安装mysql的机器上执行) mysql -uroot -p #(执行下面的语句 *.*:所有库下的所有表 %:任何IP地址或主机都可以连接) GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY 'root' WITH GRANT OPTION; FLUSH PRIVILEGES; 6. Jline包版本不一致的问题,需要拷贝hive的lib目录中jline.2.12.jar的jar包替换掉hadoop中的 /home/hadoop/app/hadoop-2.6.4/share/hadoop/yarn/lib/jline-0.9.94.jar 启动hive bin/hive ---------------------------------------------------------------------------------------------------- Hive几种使用方式: 1.Hive交互shell bin/hive 2.Hive JDBC服务(参考java jdbc连接mysql) 3.hive启动为一个服务器,来对外提供服务 bin/hiveserver2 nohup bin/hiveserver2 1>/var/log/hiveserver.log 2>/var/log/hiveserver.err & 启动成功后,可以在别的节点上用beeline去连接 bin/beeline -u jdbc:hive2://mini1:10000 -n root 或者 bin/beeline ! connect jdbc:hive2://mini1:10000 4.Hive命令 hive -e ‘sql’ bin/hive -e 'select * from t_test'
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值