1. map side join
a. mapJoin的主要意思就是,当连接的两个表是一个比较小的表和一个特别大的表的时候,可以把比较小的table直接放到内存中去,然后再对比较大的表格进行map操作,此时join就发生在map操作的时候,每当扫描一个大的table中的数据,就要去去查看小表的数据,哪条与之相符,继而进行连接。这里的join并不会涉及reduce操作。map端join的优势就是在于没有shuffle,在实际的应用中,设置方式:set hive.auto.convert.join=true;
b. hive有一个参数:hive.mapjoin.smalltable.filesize,默认值是25mb(其中一个表小于25mb时,自动启用mapjoin)
c. 要求:在hive做join时,要求小表在前(左)
2. join语句优化
优化前:select m.cid,u.id form order m join customer u on m.cid=u.id where m.dt=’20160801’;
优化后:select m.cid,u.id from (select cid from order where dt=’20160801’)m join customer u on m.cid = u.id
3. group by 优化
调优参数:set hive.groupby.skewindata=true;
数据倾斜时负载均衡,当选项设定为true,生成的查询计划会有两个MRJob。第一个MRJob 中,Map的输出结果集合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的GroupBy Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MRJob再根据预处理的数据结果按照GroupBy Key分布到Reduce中(这个过程可以保证相同的GroupBy Key被分布到同一个Reduce中),最后完成最终的聚合操作
由上面可以看出起到至关重要的作用的其实是第二个参数的设置,它使计算变成了两个mapreduce,先在第一个中在 shuffle 过程 partition 时随机给 key 打标记,使每个key 随机均匀分布到各个 reduce 上计算,但是这样只能完成部分计算,因为相同key没有分配到相同reduce上,所以需要第二次的mapreduce,这次就回归正常 shuffle,但是数据分布不均匀的问题在第一次mapreduce已经有了很大的改善,因此基本解决数据倾斜
4. count distinct 优化
优化前:select count(distinct id )from tablename
优化后:select count(*) from (select distinct id from tablename)tmp;
分析:
a. 优化前
i. 由于对id=引入了distinct操作,所以在Map阶段无法利用combine对输出结果去消重,必须将id作为key输出
ii. 在reduce阶段再对来自于不同的MapTask的结果进行消重,计入最终统计值
iii. 由于ReduceTask的数量默认为1,所以导致MapTask的所有结果都只能由这一个ReduceTask处理,这就使得ReduceTask的执行效率成为整个任务的瓶颈
iv. 虽然在使用hive的时候可以通过set mapred.reduce.tasks设置ReduceTask的数量,但是Hive在处理COUNT这种“全聚合(full aggregates)”计算时,它会忽略用户指定的Reduce Task数,而强制使用1
b. 优化后:
i. 利用Hive对嵌套语句的支持,将原来一个MapReduce作业转换为两个作业:在第一阶段选出全部的非重复id,在第二阶段再对这些已消重的id进行计数
ii. 在第一阶段我们可以通过增大Reduce的并发数,并发处理Map输出
iii. 在第二阶段,由于id已经消重,因此COUNT(*)操作在Map阶段不需要输出原id数据,只输出一个合并后的计数即可。这样即使第二阶段Hive强制指定一个Reduce Task,极少量的Map输出数据也不会使单一的Reduce Task成为瓶颈
iv. 这一优化使得在同样的运行环境下,优化后的语句执行只需要原语句20%左右的时间
5. 调整切片数(map任务数)
a. Hive底层自动对小文件做了优化,用了CombineTextInputFormat,将多个小文件切片合成一个切片。如果合成完之后的切片大小>mapred.max.split.size 的大小,就会生成一个新的切片
b. mapred.max.split.size 默认是128MB,设置方式为:set mapred.max.split.size=134217728(128MB) 单位为字节
c. 对于切片数(MapTask)数量的调整,要根据实际业务来定,比如一个100MB的文件包含了有1千万条数据,此时可以调成10个MapTask,则每个MapTask处理1百万条数据。
6. JVM重利用
a. 设置方式:set mapred.job.reuse.jvm.num.tasks=20(默认是1个)
b. JVM重用是hadoop调优参数的内容,对hive的性能具有非常大的影响,特别是对于很难避免小文件的场景或者task特别多的场景,这类场景大多数执行时间都很短。这时JVM的启动过程可能会造成相当大的开销,尤其是执行的job包含有成千上万个task任务的情况
c. JVM重用可以使得一个JVM进程在同一个JOB中重新使用N次后才会销毁。
7. 启用严格模式
a. 用户可以通过 set hive.mapred.mode=strict 来设置严格模式,改成unstrict则为非严格模式
b. 在严格模式下,用户在运行如下query的时候会报错:
i. 分区表的查询没有使用分区字段来限制
ii. 使用了order by 但没有使用limit语句(如果不使用limit,会对查询结果进行全局排序,消耗时间长)
iii. 产生了笛卡尔积
8. 关闭推测执行机制
通常在测试环境下机会确定应用程序是否跑通,如果还加上推测执行,那么在数据分片本来就会发生数据倾斜,执行执行时间就是比其他的时间长,那么hive就会把这个执行时间长的job当作运行失败,继而又产生一个相同的job去运行,造成资源的浪费。可通过如下设置关闭推测执行:
set mapreduce.map.speculative=false
set mapreduce.reduce.speculative=false
set hive.mapred.reduce.tasks.speculative.execution=false