人工智能
沈万三gz
浮躁一分,到处遍招尤悔因循二字,从来误尽英雄。
展开
-
BDI技术
1、 Agent相关技术 1.1 Agent概念 Agent应当包括:自主性、主动性、反应性、移动性和社会性等优良特点。由以上Agent的特性可以给Agent一个简单的定义:Agent是代表用户和其他程序,以主动服务的方式完成一组操作的机动计算实体。智能Agent不能在环境中单独存在,而要与多个智能Agent在同一环境中协同工作,协同的手段是相互通信,但每个智能Agent都是主动的、自治的...转载 2018-08-10 16:32:14 · 4531 阅读 · 0 评论 -
机器学习总结1
传统的机器学习任务从开始到建模的一般流程就是:获取数据——》数据预处理——》训练模型——》模型评估——》预测,分类。sklearn库是用面向对象的思想来使用的。每种算法都是一个对象,只有在实例化之后才可以对数据学习和预测。标量,向量,矩阵与张量1、标量一个标量就是一个单独的数,一般用小写的的变量名称表示。2、向量一个向量就是一列数,这些数是有序排列的。用过次序中...转载 2019-08-21 20:52:12 · 259 阅读 · 0 评论 -
TensorFlow基础1
深度学习 适用于 数据集比较大,任务复杂的场景下有标签的数据集 设计的算法是 监督学习----数据具有维度---分类学习数据没有维度---聚类学习--无监督学习回归---预测趋势分类-监督学习-有标签聚类-无标签-标签-单独一个一个个体之间的区别属性-群组个体特有的共性--特征值相关系数范围[-1~1]...转载 2019-08-15 21:05:17 · 194 阅读 · 0 评论 -
机器学习中的度量——协方差、相关系数(Pearson 相关系数)
一、相关系数第一次理解概念:Pearson相关系数 (Pearson CorrelationCoefficient)是用来衡量两个数据集合是否在一条线上面,它用来衡量定距变量间的线性关系。[1]注: 【定距变量】[2][3] 若想理解定距变量,需要与其他变量类型进行比对。 统计学依据数据的计量尺度将数据划分为四大类 ,即定距型数据、定序型数据、定类型数据和定比型数据...转载 2019-08-15 20:36:50 · 5654 阅读 · 0 评论 -
Jupyter notebook 常用快捷键
1. "shift + enter" notebook单元格内执行代码,并且自动跳至下一个的单元格2. "tab" 自动补齐代码,相当于eclipse的 alt + /3. "shift + tab" 连按2次,显示注释,相当于eclipse的f2命令模式(蓝框)和 编辑模式(绿框)的切换:蓝 - 绿:"Enter", 绿 - 蓝 :"Esc"4. 当前单元格下方...转载 2019-08-18 21:04:22 · 2504 阅读 · 2 评论 -
线性回归
拟合就是把平面上一系列的点,用一条光滑的曲线连接起来。因为这条曲线有无数种可能,从而有各种拟合方法。1.引言看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regression的讲解,然后又看了《机器学习实战》中的LogisticRegression部分,写下此篇学习笔记总结一下。首先说一下我的感受,《机器学习实战》一书在介绍原理的同时将全部的算法用...转载 2019-08-13 15:38:37 · 363 阅读 · 0 评论 -
朴素贝叶斯
《概率论》(当年我学习的课程为《概率论与数理统计》,涵盖了概率论与统计学)应该是每个理工科大学生都要学习的课程,不知道有多少同学和我一样,学得一头雾水。悲催的是,考研的时候又学习了一遍,依然不着门路,靠死记硬背过关。好在后面的学习和工作生涯中,再没有和它打过照面,直到最近开始接触机器学习。《机器学习实战》第4章,开始介绍基于概率论的分类方法。其实《机器学习》这本书对贝叶斯决策论有比较详细的介绍...转载 2019-08-13 15:08:12 · 224 阅读 · 0 评论 -
决策树
决策树(decision tree)是一类常见的机器学习方法。顾名思义,决策树是基于树结构来进行决策的,这恰是人类在面临决策问题时一种很自然的处理机制。一颗决策树包含一个根节点、若干个内部节点和若干个叶节点。叶节点对应于决策结果,其他每个节点则对应于一个属性测试。决策树学习的目的是从样本数据产生一颗泛化能力强的决策树,其基本流程遵循简单且直观的“分而治之”策略:Function cre...转载 2019-08-13 15:05:18 · 599 阅读 · 0 评论 -
[机器学习实战札记] k-近邻算法
《机器学习实战》一书介绍的第一个算法是k-近邻算法。简单的说,k-近邻算法采用测量不同特征值之间的距离方法进行分类。其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息来进行预测。《机器学习实战》一书给出的示例都是分类算法,其实该算法也适用于回归任务。在分类任务中可使用“投票法”,即选择这个k个样本中出现最多的类别标记作为预测结果...转载 2019-08-13 14:58:52 · 454 阅读 · 0 评论 -
人工智能、机器学习与深度学习
一、概念1、人工智能 人工智能(Artificial intelligence)简称AI。人工智能是计算机科学的一个分支,它企图了解智能的本质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能目前分为弱人工智能和强人工智能和超人工智能。 1)弱人工智能:弱人...转载 2019-08-13 12:59:18 · 2499 阅读 · 0 评论 -
Jadex中的Goal概念
Goal在Agent程序语言中是很重要的概念,Agent的主动性,反应性,自治性和社会能力都与goal有关联。在很多Agent系统中,goal都是一个核心的概念,比如3APL,KAOS,Tropos。goal已经成为活动(actions)和推理(reasoning)之间的纽带。活动是为了获取特定的goal而执行的,goal发生改变的时候活动也会相应发生改变。Jadex中提供了4种goal作为触...转载 2018-09-01 12:27:07 · 863 阅读 · 0 评论 -
Agent系统
Agent是分布式人工智能和现代计算机、通信技术发展的必然结果。给Agent下一个确切的定义很困难,一般都是根据自己的研究领域和需求进行定义。最经典和广为授受的是Wooldridge等人的“弱定义”和“强定义”[104]。1)弱定义:Agent一般用以说明一个具有自主能力、社交能力、反应能力和预动能力的软硬件系统。2)强定义:Agent不仅具有以上的特性,而且具有知识、信念、目的、义务等人类才具有...转载 2018-08-27 11:10:53 · 12925 阅读 · 0 评论 -
多Agent系统定义、概念、特点及概念模型
原文链接 点击打开链接1. 多Agent系统(MAS)1) 定义由分布在网络上的多个问题求解器松散耦合而成的大型复杂系统,这些问题求解器相互作用以解决由单一个体的能力知识所不能处理的复杂问题。 2) 特点 每一主体具有有限信息资源和问题求解能力,缺乏实现协作的全局观点。 系统不存在全局控制,即控制分布 知识与数据都是分散的。 计算是异步执行的。 3...转载 2018-08-27 11:09:38 · 14450 阅读 · 0 评论 -
协作方法——黑板模型
黑板的概念最早由Newell提出。20世纪70年代初期,Carnagie-Mellon大学提出黑板的问题求解模型,并研制了一个黑板系统HEARSAY-II,该系统是一个语音理解系统。在多主体系统中,根据应用问题的不同特点,有许多不同的改进形式。如:Hayes-Roth的BB1和ABE;Nii的CAGE和POLIGON;Corkill的GBB;陆汝钤院士的联合黑板等。 黑板模型的基本思想:...转载 2018-08-27 11:08:31 · 1839 阅读 · 0 评论 -
Agent概述
参考:https://www.cnblogs.com/6DAN_HUST/archive/2010/07/21/1782106.html1. Agent定义Agent的概念——1977年Carl Hewitt “Viewing Control Structures as Patterns of Passing Messages”Agent一词最早见于M.Minsky于1986年出版的《...转载 2018-08-27 10:54:44 · 66261 阅读 · 3 评论 -
BDI Agent模型结构
参考:https://www.cnblogs.com/6DAN_HUST/archive/2010/07/29/1787965.html1. BDI的概念主体的信念-愿望-意图(Belief-Desire-Intention, BDI)概念的哲学观点源自Bratman。 信念——Agent具有的关于环境信息、其他Agent信息和自身信息的集合。信念不同于知识,知识是为真的信念。 ...转载 2018-08-27 10:53:43 · 4720 阅读 · 1 评论 -
多项式回归
多项式回归相当于线性回归的特殊形式。比如:一元二次多项式:y=w0+w1x+w2x2将其转换为:y=w0+w1∗x1+w2∗x2(x=x1 x2=x2)这样就变成了多元线性回归。这样就实现了 一元高次多项式到多元一次多项式之间的转换之前,我们通过 y=wx+b线性回归模型进行拟合。同样,y=w0+w1x+w2x2,若能得到由 x=x1,x2=x2构成的特征矩阵...转载 2019-08-16 18:59:01 · 1667 阅读 · 0 评论