知识梳理系列之六——HTTPS的握手过程

本文详细介绍了HTTPS的握手过程,包括使用RSA加密算法和DH加密算法的步骤。通过解析RSA算法的数学原理,解释了密钥交换的安全性。同时,提到了DH算法作为更安全的选择,用于HTTPS握手,确保通信的隐私和安全。
摘要由CSDN通过智能技术生成

面中金问到,记录下:

使用RSA加密算法的HTTPS握手过程

1. 先梳理下RSA算法:

了解下素数、互素、欧拉公式、费马小定理:

  • 如果一个正整数只能被自身和1整除,那么这个数是素数(或者称为质数);
  • 如果两个或两个以上的正整数的公因数只有1,那么称这些数互素(或者称为互质);
  • 已知两个素数P1、P2,它们的乘积: n = P 1 × P 2 ; n = P1 \times P2; n=P1×P2;欧拉公式: 欧拉函数的值是所有小于或等于n的正整数中与n互质的数的个数。 Φ ( n ) = ( P 1 − 1 ) ⋅ ( P 2 − 1 ) ; \Phi(n) = (P1-1) \cdot (P2-1); Φ(n)=(P11)(P21);
  • 费马小定理:假如m是一个整数,n是一个质数,那么 mn- mn的倍数,可以表示为:
    m n ≡ m   ( m o d n ) 或   m ( n − 1 ) ≡ 1   ( m o d n ) 又 ∵ n 是 质 数 , ∴ ( n − 1 ) = Φ ( n ) m Φ ( n ) ≡ 1   ( m o d n ) \begin{aligned} & m^n \equiv m \ (mod \quad n) \\ & 或 \ m^{(n-1)} \equiv 1 \ (mod \quad n) \\ & 又\because n是质数,\therefore (n-1) = \Phi(n) \\ & m^{\Phi(n)} \equiv 1 \ (mod \quad n) \\ \end{aligned} mnm (modn) m(n1)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值