LeetCode - 74. Search a 2D Matrix

解法一:

又是查找,又是已经排序的数组,所以很容易想到使用二分查找来处理这个问题,首先使用第一次二分查找找到元素所在的row,再用第二次二分查找找到row中的元素,另外在写程序的时候要注意相等时的判断,以及边界条件的处理。还有一个需要考虑的问题就是,二分查找更多的在于一种思想,而并不单单是从已排序的数组中寻找元素的算法,比如这道题目使用第一次二分查找的时候可能无法在每一行的第一个元素中找到target,但是二分查找所留下的left和right可以使用,而且二分查找还有一个非常好的性质,如果要找的元素target比数组中的所有元素都小,那么最后退出循环的时候right的值是负数;如果要找的元素比数组中的所有元素都大,那么最后退出循环的时候right的值是数组中最右边元素的index,这个性质往往被忽略掉,但是在解题的时候却可以创造简洁的解法。时间复杂度是O(logm + logn),代码如下:

public class Solution{
    public boolean searchMatrix(int[][] matrix, int target){
        if(matrix == null || matrix[0].length == 0 || matrix[0][0] == 0){
            return false;
        }

        // Use binary search to find row
        int l = 0;
        int r = matrix.length - 1;
        while(l <= r){
            int mid = (l + r) / 2;
            if(matrix[mid][0] == target) return true;
            if(matrix[mid][0] > target){
                r = mid - 1;
            }else{
                l = mid + 1;
            }
        }

        int row = r;
        if(row < 0) return false;

        // Use binary search to find target
        while(l <= r){
            int mid = (l + r) / 2;
            if(matrix[row][mid] == target) return true;
            if(matrix[row][mid] > target){
                r = mid - 1;
            }else{
                l = mid + 1;
            }
        }
        return false;
    }
}


解法二:

从右上角开始搜索,如果当前元素 < target,那么向下移动,如果 > target则向左移动,注意开始点选在了右上角,这个选择非常巧妙,因为在这一点向两个不同的方向移动,当前的元素可以变大也可以变小,而如果在左上角和右下角的话,无论向哪个方向移动元素的值都会变小,所以不行,同理,起始点选在左下角也是一个可以考虑的选项。时间复杂度为O(m + n),代码如下:

public class Solution{
    public boolean searchMatrix(int[][] matrix, int target){
        if(matrix == null || matrix[0].length == 0 || matrix[0][0] == 0){
            return false;
        }

        int rows = matrix.length;
        int cols = matrix[0].length;
        
        int i = 0, j = cols - 1;
        while(i < rows && j >= 0){
            if(matrix[i][j] == target){
                return true;
            }else if(matrix[i][j] < target){
                i++;
            }else{
                j--;
            }
        }
        return false;
    }
}


知识点:

1. 解法二是搜索矩阵的一个非常好的思路,这种思路可以记录一下,在遇到矩阵相关的问题的时候可以考虑这种方法

2. 二分查找是一种思想,而不单单是一种算法,注意二分查找的判断条件是while(l <= r),除了查找之外,还要注意二分查找下标的一个性质,如果target < all items, right = -1;如果target > all elements,target = n - 1。了解和使用这个性质可以化简一些问题。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值