小波的秘密1_小波变换概况与综述

文章讨论了尽管傅立叶变换在信号分析中有广泛应用,但因其不能体现信号的局部特性及处理非平稳信号的不足。短时傅立叶变换(STFT)作为改进,通过加窗技术提供了时频分析,但窗口大小固定导致分辨率冲突。小波变换引入可变尺度和平移的小波基,成功解决了时频局部化问题,适用于非平稳信号的分析。小波分析的引入为时频分析打开了新视角。
摘要由CSDN通过智能技术生成

1.有了Fourier,为什么还需要Wavelet?

先来揭揭短:

(1)Fourier分析不能刻画时间域上信号的局部特性。

(2)Fourier分析对突变和非平稳信号的效果不好,没有时频分析。

傅立叶变换将函数投影到正弦波上,将函数分解成了不同频率的正弦波,这不能不说是一个伟大的发现,但是在大量的应用中,傅立叶变换的局限性却日趋明显,事实上在光滑平稳信号的表示中,傅立叶基已经达到了近似最优表示,但是日常生活中的信号却并不是一直光滑的,而且奇异是平凡的,傅立叶在奇异点的表现就着实让人不爽,从方波的傅立叶逼近就可以看出来,用了大量不同频率的三角波去逼近其系数衰减程度相当缓慢,而且会产生Gibbs效应。其内在的原因是其基为全局性基,没有局部优化能力,以至局部一个小小的摆动也会影响全局的系数。实际应用中很需要时频局部化,傅立叶显然缺乏此能力了。即使如此,由于其鲜明的物理意义和快速计算,在很多场合仍然应用广泛。傅立叶变换在从连续到离散的情形是值得借鉴与学习的,大家都知道,时间周期对应频域离散,时间离散对应频域周期,时间离散周期对应频域离散周期,DFT其实是将离散信号做周期延拓然后做傅立叶变换再截取一个周期,反变换同样如此,所以DFT用的是块基的概念,这样如果信号两端的信号连接后不再光滑(即使两边都光滑),同样会在边界上产生大幅值系数(边界效应),延伸到图像中就是块效应。当对信号做对称周期延拓后再做傅立叶变换得到的正弦系数全部为0,也就是任何对称函数可以写成余弦的线性组合,同样按照离散的思路构造得到的是离散块余弦基,即DCT变换,虽然DCT可以通过对称后周期延拓再变换减少了边界效应(两边信号接上了,但不一定平滑),但也不能消除块效应,尤其是图像变换中人为将图像分成8*8处理后块效应更加明显。但是DCT很好的能量聚集效应让人惊奇,加之快速计算方法使它替代DFT成为图像的压缩的标准了很长时间(JPEG)。


闲扯了这么多,不要迷糊,开始上图

第一个就是傅立叶变换是整个时域,所以没有局部特征。这是由基函数决定的,同时如果在时域发生突变,那么在频域就需要大量的正弦波去拟合,这也是傅立叶变换性质决定的。


第二个就是面对非平稳信号,傅立叶变换可以看到由哪些频率组成,但不知道各成分对应的时刻是什么。也就是没有时频分析,看不出来信号频域随着时间变换的情况,反过来说就是,一个的频图对应好几个时域图,不知道是哪个,这个在实际应用中就不方便了,如图:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值