贝叶斯决策定理

  • 讨论在不确定情况下决策的概率理论框架。在分类中,贝叶斯规则用来计算类的概率。会讨论推广到怎样做出合理的决策将期望风险最小化。

引言

数据来自一个不完全清楚的过程。将该过程作为随机过程建模表明我们缺乏知识,并用概率理论来分析它(也许该过程确定,只是我们没有获取关于它的完全知识的途径)。
我们不能获取的那些额外的数据称为不可观测的变量(unobservable variable),对应的称为可观测的变量
在此讨论贝叶斯决策,当然应该先介绍一下朴素贝叶斯法了。

朴素贝叶斯法

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。
根据贝叶斯定理计算后验概率:

P ( Y = c k | X = x ) = P ( X = x | Y = c k ) P ( Y = c k ) ∑ k P ( X = x | Y = c k ) P ( Y = c k )

后验概率最大化:
f ( x ) = a r g m a x k ⁡ P ( c k | X = x )

定义0-1损失函数(zero-one loss):
λ i k = { 0 如果 i = k 1 如果 i  ≠ k

所有正确的决策没有损失,并且所有错误具有相同的代价。采取工作 α i 的风险是

R ( α i | x ) = ∑ k = 1 k ( λ i k P ( C k | x ) ) = ∑ k ≠ i P ( C k | x ) = 1 − P ( C i | x )

在一些应用中,错误的决策也许会有很高的代价。一般情况,如果自动系统对它的决策的把握较低,则需要一个更复杂的决策(如人工的)。
一个可能的损失函数如下:

λ i k = { 0 如果 i = k λ 如果 i = K + 1 1 如果 i  ≠ k

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值