WIN10下安装Cuda与Cudnn

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、确认需安装的版本

(1)查看自己N卡支持的CUDA版本,打开NVIDIA控制面板,选择系统信息

在这里插入图片描述
查看系统信息
在这里插入图片描述
在这里插入图片描述

二、下载CUDA与CUDNN

2.1下载CUDA10.1

PS:若NVIDIA控制面板提示未安装驱动,去官网下载对应的驱动(http://www.nvidia.cn/Download/index.aspx?lang=cn)
在这里插入图片描述
NVIDIA官网下载对应CUDA版本
CUDA下载地址:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
在这里插入图片描述
下载CUDA10.1

2.2.下载CUDNN

官网下载地址:https://developer.nvidia.com/rdp/cudnn-download
没有账号需要注册账号,账号登录后,找到自己对应的CUDA版本,点击下载
在这里插入图片描述
在这里插入图片描述

三、安装过程

3.1安装CUDA

安装路径,选择OK(安装完成后路径会自动变化,所以这里路径选择默认就好)
在这里插入图片描述
在这里插入图片描述

自定义安装

在这里插入图片描述

取消勾选GeForce Experience

如果电脑上本身就有Visual Studio Integration,要将这个取消勾选,避免冲突了

点开Driver comonents,Display Driver这一行,前面显示的是Cuda本身包含的驱动版本是411.31

如果你电脑目前安装的驱动版本号新于Cuda本身自带的驱动版本号,那一定要把这个勾去掉。否则会安装失败(相同的话,就不用去取勾了)

在这里插入图片描述

只选CUDA不然会失败

在这里插入图片描述

CUDA的安装位置可以自定义,系统默认是在系统盘C盘,为了方便日后管理,可以安装到非系统盘的其他盘
在这里插入图片描述

安装完成

3.2配置CUDNN

解压CUDNN后,将对应的bin、lib、include与CUDA10.1对应的bin、lib、include进行合并。
在这里插入图片描述

3.3 配置环境变量

安装完CUDA后,CUDA会自动添加到环境变量中
在这里插入图片描述

手动添加其余的的环境变量如下图:
在这里插入图片描述

对照如下的系统变量,若没有则手动添加:

在这里插入图片描述
在这里插入图片描述

3.4 测试CUDA

如果想让环境变量立即生效,那么打开“命令提示符”,输入:set PATH=c:
然后输入:echo %PATH%
关闭“命令提示符”,之后再次开启命令提示符,输入:echo %PATH%
就会发现新添加的环境变量已经生效了。
输入:nvcc -V命令可以正常查看到cuda的信息了(确保格式正确,否则会报错)
若提示ncvv –V不是内部或外部命令,按照下列方法确认CUDA是否安装成功。
在C盘中找到CUDA文件夹,并且打开v10.0文件夹,找到对应的位置,
在这里插入图片描述

然后以管理员身份打开cmd,通过cd命令(cd/d C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\demo_suite)转换到相应的文件位置,输入上图圈中的命令进行测试,若会显示result=pass,则说明安装无误,那么应该是在安装之后没有设置好系统环境变量,重新设置变量之后再进行测试。
在这里插入图片描述

至此,cuda安装成功(如下图)

在这里插入图片描述

### 回答1: 在Win10安装CUDAcuDNN需要以下步骤: 1. 下载CUDAcuDNN安装包,可以在NVIDIA官网上下载。 2. 安装CUDA,按照安装向导进行安装,注意选择合适的安装路径和组件。 3. 安装cuDNN,将下载的cuDNN文件解压CUDA安装路径下,例如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.。 4. 配置环境变量,将CUDAcuDNN的路径添加到系统环境变量中,例如将C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.\bin和C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.\extras\CUPTI\lib64添加到Path变量中。 5. 测试安装是否成功,可以使用命令行输入nvcc -V和python -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([100, 100])))"来测试CUDAcuDNN是否正常工作。 希望对你有帮助! ### 回答2: 对于使用 NVIDIA GPU 进行深度学习开发的工程师和研究人员而言,CUDAcuDNN安装是非常关键和必须的步骤。以下是 Win10CUDAcuDNN安装步骤: 1. 安装 CUDA: 首先,需要在 NVIDIA 官网上找到特定的版本。然后执行以下步骤: - 打开 CUDA 安装包并运行安装程序。 - 选择自定义安装选项,使得只有所需的组件被选择。 - 根据您的 GPU 版本选择正确的 CUDA 版本(有关详细信息,请参阅 CUDA 网站文档)。 2. 安装 cuDNN: 在 NVIDIA 官网上下载 cuDNN 并按以下步骤进行安装: - 将 cuDNN 解压缩到任意位置(例如,C: \ cudnn)。 - 将 cuDNN 文件夹添加到环境变量 Path 中。 3. 配置环境变量: 将所需的环境变量添加到 Windows 系统中,以便能够正常使用 CUDAcuDNN。 - 打开“计算机” ->“属性” ->“高级系统设置” ->“环境变量”。 - 选择“系统变量”并单击“新建”键。 - 输入变量名称和变量值,例如,CUDA_PATH 和 C: \ Program Files \ NVIDIA GPU Computing Toolkit \ CUDA \ v10.0。 4. 测试 CUDAcuDNN 安装: 最后,通过运行代码测试 CUDAcuDNN 安装是否正确。 - 编写一个简单的 CUDAcuDNN 程序。 - 打开命令提示符并导航到程序的路径。 - 编译程序并运行编译后的可执行文件。 如果一切正常,您将能够在命令行中看到程序输出,并且您的 GPU 将在运行程序时被使用。 总的来说,正确安装 CUDAcuDNN 对于使用 NVIDIA GPU 进行深度学习和计算机视觉开发是至关重要的,而 Windows 10 平台下的安装步骤比较简单,只要按照上述步骤进行配置即可。 ### 回答3: cudacudnn是用于深度学习中GPU加速的重要工具。在win10系统下安装cudacudnn需要以下步骤: 一、安装cuda 1. 确认显卡型号及其支持的cuda版本号 在官网上下载cuda对应的版本,支持的显卡型号也需要进行确认。一般来说,新款显卡支持的cuda版本比较高。 2. 下载cuda安装包 在官网上下载cuda安装包。选择合适的安装包并下载后,解压至自定义的目录,如:“D:\cuda\"。 3. 安装cuda 进入解压后文件夹内找到exe安装文件,运行该文件来开始cuda安装。需要注意的是,在安装过程中,需要勾选“添加到系统环境变量中”选项。 4. 测试cuda 安装完成后,可以通过在命令行输入nvcc -V,来检查cuda是否安装成功。终端输出cuda的版本信息,则说明cuda安装成功。 二、安装cudnn 1. 下载cudnn 在NVIDIA开发者网站上下载对应的cudnn版本,如“cudnn-11.3-windows-x64-v8.2.1.32.zip”。 2. 解压cudnn 将下载后的cudnn压缩包解压cuda安装目录,如“D:\cuda\”,解压后应该出现以下文件: bin, include和lib等文件夹。 3. 配置cudnncuda 进入cuda安装目录,找到与安装cuda时配置好的GPU加速路径一致的lib\x64文件夹,在此目录下将cudnn解压得到的解压文件夹中的cudnn64_8.dll文件复制到此目录下。在此之后,cudnn会被配置为与cuda相兼容。 4. 测试cudacudnn 安装完成后,可以使用TensorFlow\PyTorch等深度学习框架进行GPU加速开发,通过运行相关程序测试,检查CUDAcuDNN是否都安装成功。 以上便是win10系统下安装cudacudnn的步骤,相信能够帮助用户顺利安装cudacudnn,进行深度学习的GPU加速开发。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值