基于MATLAB的石榴病虫害图像分类系统设计

本文针对石榴病虫害识别问题,研究了图像预处理方法、特征提取策略,特别是利用神经网络进行图像识别分类,旨在提高诊断的及时性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目 录
摘要 1
关键词 1
Abstract. 1
Key words 1
1 绪论 2
2 相关理论简介 2
3 石榴病虫害图像预处理 2
4 特征值分析和选择 2
5 系统及模型训练和识别的可靠性检测 2
6 总结 2

参考文献 11
致谢 12
独撰声明 13
附录… 17
1.3 本文主要研究内容
针对石榴虫害识别诊断不及时、准确性不高的问题,本选题以常见的石榴病虫害种类为研究对象,对其进行病虫害识别的研究。
主要有三个研究内容:
(1)图像预处理
一般原图像存在噪声,容易干扰分割和特征分析。所以在可见光背景进行图像处理时,一般先对石榴叶、茎外部病虫害图像进行图像预处理。根据石榴病虫害图像的特点分析与比较几种图像预处理方法的功能,提出适合于石榴病虫害图像预处理的方法 [7]。
(2)图像特征提取
石榴病虫害图像特征是病虫害图像信息的有效表达,准确提取病虫害图像特征是有效识别病虫害的重要保证。通常来说石榴得病后,新陈代谢会使得叶片、根茎等部位发生或大或小的改变,从而引起植物细胞不定程度的变化,常见的特征包括颜色、纹理、形态[20-21]等。而石榴虫害往往是密集型的小虫或数量较少的大虫类型,特征则根据其身体特征进行研究。
(3)图像识别分类
利用神经网络在计算机视觉方面的优秀性能以及其强大的建模能力、特征学习能力和模式识别能力。构建一个病虫害识别模型,对模型进行训练、参数调整、识别测试等,实现石榴病虫害的识别分类[22]。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shejizuopin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值