基于python的量化交易策略(文献综述)

本文探讨了基于Python的量化交易在中国和国际市场的现状,介绍了国外知名量化交易基金的成功案例,如文艺复兴科技公司的大奖章基金。国内虽然起步较晚,但富国基金和尊嘉ALPHA等基金已展现出量化交易的优势。文章还概述了遗传算法、支持向量机和神经网络在量化交易中的应用,以及国内学者如何利用这些技术进行策略构建和预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录
 基于python的量化交易策略 1
1 背景 1
2 国内外现状 1
2.1 国外的现状和研究 2
2.2 国内的现状和研究 2
3 遗传算法 4
4 支持向量机 4
5 神经网络算法 4
4 结论 5
参考文献 6

基于python的量化交易策略
1 背景
近年来中国金融市场发展迅速,股票期货等市场受到很多资金的追捧,股票市场去年更是经历了一波快速上涨的牛市,然而因为这是一波由杠杆强行推上去的牛市,再加上各种政策等原因,最终引发了一场股灾,市场一路急速向下,引起了金融市场剧烈波动,造成许多投资者损失惨重。但也不是所用投资者都损失了所有盈利,比如一部分采用量化交易的机构,甚至他们在经历股灾后还有少许盈利。
随着市场的日渐成熟,可交易的品种日益增多,所掌握的资金规模越来越大,许多采用传统投资方法的机构和零售交易者愈发感到力不从心,例如在国内各个比特币平台利用价差进行套利,光采取人工盯盘来寻找机会往往需要花费很多精力,而且整天高度注意力集中对交易员的身体素质也是一种考验,况且这种套利机会往往是一瞬之间的事,从交易员发现机会到手动执行下单这中间需要很多时间,很容易失去一次很好的套利机会,而采用程序控制自动发现套利机会并进行下单的量化交易渐渐被人所开发出来并利用。
随着数学,统计学和计算机学的发展,量化交易起源于上世纪70年代的国外发达国家的股票市场,之后在期货交易市场迅速发展并普及开来,渐渐成为了主流,以至于到后来占国外期货市场交易量的百分之七八十,包括程序高频交易,也属于量化交易的一部分,国内则还在起步阶段。从事量化交易的交易者通常被称为quant。
2 国内外现状

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shejizuopin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值