目录
基于python的量化交易策略 1
1 背景 1
2 国内外现状 1
2.1 国外的现状和研究 2
2.2 国内的现状和研究 2
3 遗传算法 4
4 支持向量机 4
5 神经网络算法 4
4 结论 5
参考文献 6
基于python的量化交易策略
1 背景
近年来中国金融市场发展迅速,股票期货等市场受到很多资金的追捧,股票市场去年更是经历了一波快速上涨的牛市,然而因为这是一波由杠杆强行推上去的牛市,再加上各种政策等原因,最终引发了一场股灾,市场一路急速向下,引起了金融市场剧烈波动,造成许多投资者损失惨重。但也不是所用投资者都损失了所有盈利,比如一部分采用量化交易的机构,甚至他们在经历股灾后还有少许盈利。
随着市场的日渐成熟,可交易的品种日益增多,所掌握的资金规模越来越大,许多采用传统投资方法的机构和零售交易者愈发感到力不从心,例如在国内各个比特币平台利用价差进行套利,光采取人工盯盘来寻找机会往往需要花费很多精力,而且整天高度注意力集中对交易员的身体素质也是一种考验,况且这种套利机会往往是一瞬之间的事,从交易员发现机会到手动执行下单这中间需要很多时间,很容易失去一次很好的套利机会,而采用程序控制自动发现套利机会并进行下单的量化交易渐渐被人所开发出来并利用。
随着数学,统计学和计算机学的发展,量化交易起源于上世纪70年代的国外发达国家的股票市场,之后在期货交易市场迅速发展并普及开来,渐渐成为了主流,以至于到后来占国外期货市场交易量的百分之七八十,包括程序高频交易,也属于量化交易的一部分,国内则还在起步阶段。从事量化交易的交易者通常被称为quant。
2 国内外现状