目 录
1 绪 论 1
1.1 研究意义 1
1.2 研究现状 2
1.2.1 李对称的发展及国内外研究现状 2
1.2.2 李对称应用 3
1.3 研究内容 4
1.3.1 要解决的主要问题 4
1.3.2 研究重点及难点范围 4
1.4 李对称理论的介绍 4
1.4.1 单参数李变换群 4
1.4.2 无穷小变换 5
1.4.3 群的不变量 6
1.4.4 向量场延拓和PDE不变性的无穷小准则 6
1.5 本文的主要工作及安排 8
2 实例一:广义Burgers方程的李对称分析 9
2.1 情况一: 9
2.1.1 李对称分析 9
2.1.2 对称约化 12
2.2 情况二: 13
2.2.1 李对称分析 13
2.2.2 对称约化 15
2.3 本章小结 16
3 实例二:Gardner方程的李对称分析 17
3.1 文献内容说明 17
3.1.1 文献的计算错误分析 19
3.2 Gardner方程的正确分析 19
3.3 Gardner方程的对称约化 22
3.3.1 情况一 22
3.3.2 情况二 24
3.4 两个发现 24
3.4.1 发现一 24
3.4.2 发现二 24
3.5 本章小结 25
结 论 25
参考文献 27
致 谢 29
图目录
图3.1 和的三维图 23
表目录
表3.1 变换表 22
1.3 研究内容
1.3.1 要解决的主要问题
对李群与李代数,方程的对称与向量场,向量场的延拓等相关知识的了解。
掌握李对称分析,将这个方法应用于具体的非线性偏微分方程中,并且通过向量场的延拓求得该方程的对称,得到该方程的向量场和单参数变换群。最后利用方程的单参数不变群进一步求方程的迭代解和约化解。
1.3.2 研究重点及难点范围
研究重点:(1)掌握并整理李对称理论的性质;(2)要详细展现文献中李对称的分析过程;(3)对现有的方法加以推广或者应用现有的方法于新的实例。
研究难点:(1)是需要掌握一些有关偏微分方程的一些理论;(2)由于自然社会现象的复杂多变,今后在研究非线性偏微分方程的精确解时会由低维向高维转变。那么随之而来的就是问题越来越复杂,研究难度越来越大。(3)由于非线性演化方程的每个求解方法都有其适用范围,找到合适的方法可以使求解工作顺利的展开且结果准确,而超出范围之外的研究不仅会使工作量增大,难度增加,还会在大量的计算之后出现无研究意义的情况。(4)在研究方程的解时得到的往往是递推公式的形式,而不是真正意义上的封闭形式的解,也就是所说的通项公式。
1.4 李对称理论的介绍
求解微分方程的李变换群方法,通常称为经典(或古典)无穷小变换方法。这种方法的思想和原理在数学物理的研究中扮演着非常重要的角色。在一定的变换下,可以使用微分方程的某些对称去构造或寻找其精确解。因此,李对称的分析方法提供了获得微分方程的精确解或相似解的一种系统和精确的途径。此外,通过李对称技巧获得的群不变解可以对物理模型本身进行深刻的解释。