数论
SHIELD_SKY
这个作者很懒,什么都没留下…
展开
-
浅谈扩展欧几里得算法
引题 NOIP 2012 D2T1 同余方程 描述 求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解。 输入格式 输入只有一行,包含两个正整数a, b,用一个空格隔开。 输出格式 输出只有一行,包含一个正整数x,即最小正整数解。输入数据保证一定有解。 样例输入 3 10 样例输出 7 对于40%的数据,2 ≤b≤ 1,0转载 2015-05-03 17:11:56 · 466 阅读 · 0 评论 -
快速幂取模算法
参考文章来源:Reait Home(http://www.reait.com/blog.html) 转载请注明,谢谢合作。 在Miller Rabbin测试素数,就用到了快速幂取模的思想。这里总结下。 求a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 算法1:利用公式a*b%c=((a%c)*b)%c,这样每一步都进行这种处理,这就解决了a^b可能太转载 2015-10-02 23:38:18 · 512 阅读 · 0 评论 -
素性测试
素性测试主要使用了两个定理费马小定理 : 如果p是一个素数,且0 < a < p,则a ^ (p - 1) ≡ 1 (mod p)很不幸这个定理不是充分的。所以我们再补充一个定理来加强它。二次探测定理:如果p是一个素数,且0 < x < p,则方程x ^ 2 ≡ 1 (mod p)的解为x = 1, p - 1这个定理其实很好理解x ^ 2 ≡ 1 (mod p) =转载 2015-10-04 20:42:41 · 889 阅读 · 0 评论