每天一个数据分析题(二百二十)

文章讨论了在梯度提升决策树(GBDT)的集成学习中,每次训练新决策树的目标是预测上一个模型的残差,以此来降低模型的方差,提高整体预测精度。
摘要由CSDN通过智能技术生成

在集成学习的GBDT算法中,每次训练新的决策树的目的是( )?

A. 预测原始数据的标签

B. 预测上一个模型的残差

C. 降低模型的偏差

D. 降低模型的方差

题目来源于CDA模拟题库

点击此处获取答案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

跟着紫枫学姐学CDA

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值