AaronChou的博客

找一个怪兽,让它追着你。

Doc Embedding-语义相似度计算

数据集 公开数据集 英文: GLUE数据集中的MNLI, QQP, QNLI, STS-B, MRPC, RTE ,[SWAG]. STS基准收集了2012年至2017年国际语义评测SemEval中所有的英语数据。 SICK数据集包含了10000对英语句子,其中的标签说明了它们之间的语义关联和逻...

2019-01-07 22:28:25

阅读数:54

评论数:0

BERT简单使用

文章目录Use BERT as feature环境入口最终结果预处理 Use BERT as feature 如何调用bert,将输入的语句输出为向量? 如果在自己的代码中添加bert作为底层特征,需要官方例子run_classifier.py的那么多代码吗? 环境 mac: tf==1.4....

2019-01-03 23:52:37

阅读数:100

评论数:1

读博士前要了解的20件事

机器学习大牛、谷歌AI总负责人Jeff Dean发推转帖,推荐了一篇刚毕业的博士生写的文章,内容与技术无关,而是关于攻读博士学位时需要注意的一些小tip。此文发表在《自然》官网的Career专栏上。 **1.找到适合自己的计划和节奏,在工作与生活之间保持健康的平衡。**最好是在整个计划中保持良...

2018-11-15 17:30:10

阅读数:138

评论数:0

谷歌机器对话Self-Play框架M2M-Building a Conversational Agent Overnight with Dialogue Self-Play

Building a Conversational Agent Overnight with Dialogue Self-Play Google提出了 Machines Talking To Machines(M2M,机器对话机器)的框架,这是一个功能导向的流程,用于训练对话智能体。其主要目标是...

2018-11-13 22:27:01

阅读数:36

评论数:0

对话系统

本文是个人笔记,来源于资料标注与reference中。 对话系统涉及的五种主要技术。 语音识别(ASR) 口语理解(SLU) 对话管理(DM) 自然语言生成(NLG) 文本生成语音(TTS) 口语理解-SLU 输入经过ASR输出的语句,将其转换为语义表示,如frame形式,包含intent和多...

2018-11-13 22:23:59

阅读数:139

评论数:0

BERT-Bidirectional Encoder Representations from Transformers

BERT, or Bidirectional Encoder Representations from Transformers BERT是google最新提出的NLP预训练方法,在大型文本语料库(如维基百科)上训练通用的“语言理解”模型,然后将该模型用于我们关心的下游NLP任务(如分类、阅读...

2018-11-06 22:27:45

阅读数:231

评论数:1

ELMo - Deep contextualized word representations

Deep contextualized word representations (ELMo) 最近NLP突飞猛进,现有ELMo,后有BERT,周末整理一波。 glove以及word2vec的word embedding在nlp任务中都取得了最好的效果, 现在几乎没有一个NLP的任务中不加wor...

2018-11-06 22:25:15

阅读数:132

评论数:0

『 论文阅读』Slot-Gated Modeling for Joint Slot Filling and Intent Prediction

文章目录贡献:2. 模型2.1 底层特征:2.2 attention:2.3 slot-Gate:实验结果:conclusionReference 来自论文:《Slot-Gated Modeling for Joint Slot Filling and Intent Prediction》 基...

2018-10-14 23:11:34

阅读数:350

评论数:0

『 论文阅读』Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling

文章目录1、加入Attention机制和对齐机制的RNN编码器-解码器模型1.1 底层特征:1.1.1 BiRNN(GRU or LSTM)1.2 attention:2、加入Attention机制的RNN模型。实验结果:ConclusionsReference 来自于论文:《Attention...

2018-10-14 23:04:54

阅读数:282

评论数:0

1x1的卷积-模型压缩

什么是卷积? 如图: 详细见卷积介绍。 1x1的卷积如何实现模型压缩 对于channel为1的图像,没有作用,对于大于1的图像就凸显作用了。 举个例子,如图,输入图像是28x28x192,输出是28x28x32。 如果卷积核为5x5x32时候,参数量是:(5x5x32 + 1)x 19...

2018-08-23 20:10:28

阅读数:130

评论数:0

计算机会议排名

CORE Computer Science Conference Rankings Acronym Standard Name Rank AAAI National Conference of the American Association for Artifi...

2018-07-30 17:39:11

阅读数:445

评论数:0

『 论文阅读』:Convolutional Neural Networks for Sentence Classification

Abstract CNN应用于文本分类系列实验表明,使用很少超参合静态变量的CNN在多分类任务上表现出色。fine-tuning的词向量还能提高性能。本文同时利用了微调和静态的词向量(multi-channel)。 1 Introduct Word vectors: train by M...

2018-07-21 10:22:43

阅读数:174

评论数:0

『 论文阅读』LightGBM原理-LightGBM: A Highly Efficient Gradient Boosting Decision Tree

Abstract 1. Introduction 2. Preliminaries 2.1 GBDT and Its Complexity Analysis 2.2 Related Work 3. Gradient-based One-Side Sampling 3.1...

2018-07-03 10:29:05

阅读数:2950

评论数:2

『Gradient Boosting 』LightGBM与XGBoost对比

LightGBM和XGBoost都是GBDT的高效实现,所以先简单介绍下GBDT。 1. Gradient Boosting Decision Tree 提升树的学习优化过程中,损失函数平方损失和指数损失时候,每一步优化相对简单,但对于一般损失函数优化的问题,Freidman提...

2018-07-03 10:22:27

阅读数:325

评论数:0

自然语言处理入门

自然语言处理(简称NLP),是研究计算机处理人类语言的一门技术,包括: 1.句法语义分析:对于给定的句子,进行分词、词性标记、命名实体识别和链接、句法分析、语义角色识别和多义词消歧。 2.信息抽取:从给定文本中抽取重要的信息,比如,时间、地点、人物、事件、原因、结果、数字、日期、货币、专有名词...

2018-05-25 11:07:05

阅读数:248

评论数:0

台大李宏毅机器学习课程

[机器学习入门] 台大李宏毅机器学习课程,转载来自:https://blog.csdn.net/soulmeetliang/article/details/77461607 TOPIC CONTENTS BLOG PDF VIDEO 【1】Learning M...

2018-05-05 09:48:05

阅读数:609

评论数:0

『 kaggle』kaggle-DATA-SCIENCE-BOWL-2018(U-net方法)

1. 赛题背景 通过自动化细胞核检测,有利于检测细胞对各种治疗方法的反应,了解潜在生物学过程。队伍需要分析数据观察模式,抽象出问题并通过建立计算机模型识别各种条件下的一系列细胞核。 2. 数据预处理 数据分析 数据集包含部分的分割核图像。由于其获取方式、细胞类型、放大倍数和呈现模式...

2018-04-26 19:12:55

阅读数:617

评论数:2

『 论文阅读』10 CHALLENGING PROBLEMS IN DATA MINING RESEARCH

很多不错论文都引用了此篇论文,于是阅读了这篇06年论文。 Abstract 介绍数据挖掘中的10个具有挑战性的问题,分析数据挖掘问题出现位置的一份高级指南。 这篇文章是作者通过咨询一些最活跃的数据挖掘和机器学习研究人员(IEEE ICDM和ACM KDD会议的组织者),就他们对未来数据...

2018-04-26 19:09:37

阅读数:197

评论数:4

『 论文阅读』U-Net Convolutional Networks for Biomedical Image Segmentation

U-Net Convolutional Networks for Biomedical Image Segmentation 用于生物医学图像分割的U-Net卷积网络 Abstract 普遍认为,深度网络的成功培训需要数千个带注释的训练样本。在本文中,提出了一种网络和培训策略,依靠强大的...

2018-04-26 18:55:19

阅读数:452

评论数:6

算法面试和实习经验分享

本人是2018届,去年实习拿了阿里算法工程师offer,最终顺利转正,也是看了师兄师姐的经验,饮水思源,于是将自己的总结一份,希望能够帮到师弟师妹。 1. 学习准备 What you want? 想清楚自己要做什么? Follow自己的兴趣方向 OR 现在什么挣钱最多? 算法对理...

2018-04-26 18:53:19

阅读数:714

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭