[原创]10^9进制高精度大整数加法(MMX版本)

// 本代码使用在分治法的时候,不必考虑数据对齐的问题(如果考虑就复杂了),len也是偶数,所以后面的len为奇数的检查部分是没有必要的,跟一般的方法快不了多少,微乎其微,在此仅提供另外一种思路,本人原创的,如果你有更好的方法请告知

// 实现 dest = a + b ,dest, a, b都是高位在前,低位在后,即dest[0]表示数的最高位,a,b也类似

const unsigned int Base = 1000000000;    // 10^9

const unsigned __int64 Base64     = 0x3B9ACA003B9ACA00;
const unsigned __int64 CarryFirst = 0x0000000100000000;
const unsigned __int64 CarryNext  = 0x0000000000000001;

/* add_mmx() mmx指令版本 */
__declspec(naked)
long add_mmx(unsigned long *dest, unsigned long *a, unsigned long *b, size_t len)
{
    __asm
    {
        mov ecx, dword ptr [esp+0x10]   // len
        xor eax, eax
        test ecx, ecx
        jz add_exit

        push ebp
        mov ebp, ecx

        push ebx
        mov ebx, dword ptr [esp+0x14]   // ebx = b
        push esi
        mov esi, dword ptr [esp+0x14]   // esi = a
        push edi
        mov edi, dword ptr [esp+0x14]   // edi = dest
        sub esi, ebx                    // esi = a - b
        lea edx, dword ptr [ebx+4*ecx-8]    // &b[i]
        sub edi, ebx                    // edi = dest - b

        shr ecx, 1                      // len = len / 2

        movq mm7, Base64                // 0x3B9ACA003B9ACA00
        movq mm5, CarryFirst            // 0x0000000100000000
        movq mm6, CarryNext             // 0x0000000000000001
       
        pxor mm2, mm2                   // carry 清零

add_loop:
        movq mm0, dword ptr [esi+edx]   // a[i]
        movq mm1, dword ptr [edx]       // b[i]

        paddd mm0, mm2                  // sum = a[i]+carry
        movq mm3, mm7                   // mm7 = Base64
        paddd mm0, mm1                  // sum += b[i]

        pcmpgtd mm3, mm0                // sum >= Base(10^9) ? 这里比较复杂,有讲究,必须比较2次
        pandn mm3, mm5                  // mm5 = CarryFirst
        psrlq mm3, 32                   // 获得进位 CarryFirst, mm3 >> 32
       
        movq mm4, mm7                   // mm7 = Base64
        paddd mm0, mm3                  // 累加进位

        pcmpgtd mm4, mm0                // sum >= Base(10^9) ? 进位以后,第二次比较

        movq mm2, mm4                   // 备份比较结果
        pandn mm4, mm7                  // 获得进位减法变量, 用于sum -= Base
        pandn mm2, mm6                  // 获得下一次的进位, CarryNext

        psubd mm0, mm4                  // 相当于 sum -= Base
        psllq mm2, 32                   // carry = CarryNext << 32

        movq dword ptr [edi+edx], mm0   // dest[i] = sum
        sub edx, 8                      // edx = &b[i] - 8, 相当于i-=2
        dec ecx                         // len--
        jne add_loop

        test ebp, 1                     // 如果len是奇数,则累加最后一个数
        jz add_fast_ret

        mov ecx, dword ptr [esi+edx]    // esi = a[i]
        mov ebx, dword ptr [edx]        // edx = b[i]
        add ecx, ebx                    // sum = a[i] + b[i]
        mov ebx, Base                   // esi = Base
        add ecx, eax                    // sum += carry
        xor eax, eax                    // carry = 0
        cmp ecx, ebx                    // sum >= Base ?
        jb  add_sum                     // <
        mov eax, 1                      // carry = 1
        sub ecx, ebx                    // sum -= Base

add_sum:
        mov dword ptr [edi+edx], ecx    // dest[i] = sum

        pop edi
        pop esi
        pop ebx
        pop ebp

        emms
add_exit:
        ret

add_fast_ret:

        psrlq mm2, 32                   // carry >> 32
        movd eax, mm2                   // 返回 carry

        pop edi
        pop esi
        pop ebx
        pop ebp

        emms
        ret
    }
}

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值