图的表示

有两种方法:邻接表和邻接矩阵,下面分别是无向图和有向图的两种表示方法,均来自算法导论
这里写图片描述
这里写图片描述


图的遍历

分为广度优先遍历和深度优先遍历下面分别就两种方法给出伪代码和c++代码,其中图的存储使用邻接矩阵存储。

  • 广度优先遍历

伪代码
这里写图片描述

C++代码

#include <iostream>
#include <queue>
using namespace std;

#define N 6  
queue<int> Queue;

struct adj_matrix {
    int vertex[N];
    int edge[N][N];
};

struct adj_matrix matrix = {
    { 1, 2, 3, 4, 5, 6 },

    { { 0, 1, 0, 1, 0, 0 },
    { 0, 0, 0, 0, 1, 0 },
    { 0, 0, 0, 0, 1, 1 },
    { 0, 1, 0, 0, 0, 0 },
    { 0, 0, 0, 1, 0, 0 },
    { 0, 0, 0, 0, 0, 1 } }
};

int visit[N];



void bfs_visit(struct adj_matrix *G, int s)
{
    cout << G->vertex[s] << " ";
    visit[s] = 1;
    Queue.push(s);
    int u;
    while (!Queue.empty()){
        u = Queue.front();
        Queue.pop();
        for (int v = 0; v < N; v++){
            if (G->edge[u][v] == 1 && visit[v] == 0){
                cout << G->vertex[v] << " ";
                visit[v] = 1;
                Queue.push(v);
            }
        }
    }

}

void bfs(struct adj_matrix *G){
    for (int u = 0; u < N; u++){
        if (visit[u] == 0)
            bfs_visit(G, u);
    }
}

int main(void)
{
    memset(visit, 0, N);
    bfs(&matrix);
    cout << endl;
    getchar();
    return 0;
}

  • 深度优先遍历

伪代码
这里写图片描述

C++代码

#include <iostream>
using namespace std;
#define N 6  

struct adj_matrix {
    int vertex[N];
    int edge[N][N];
};

struct adj_matrix matrix = {
    { 1, 2, 3, 4, 5, 6 },

    { { 0, 1, 0, 1, 0, 0 },
    { 0, 0, 0, 0, 1, 0 },
    { 0, 0, 0, 0, 1, 1 },
    { 0, 1, 0, 0, 0, 0 },
    { 0, 0, 0, 1, 0, 0 },
    { 0, 0, 0, 0, 0, 1 } }
};

int visit[N] = { 0, 0, 0, 0, 0, 0 };

void dfs_visit(struct adj_matrix *G, int u)
{
    int v;
    visit[u] = 1;
    cout << G->vertex[u] << " ";
    for (v = 0; v < N; v++) {
        if (G->edge[u][v] == 1 && visit[v] != 1) {
            dfs_visit(G, v);
        }
    }
}

void dfs(struct adj_matrix *G)
{
    int u;
    for (u = 0; u < N; u++) {
        if (visit[u] != 1) {
            dfs_visit(G, u);
        }
    }
}

int main(void)
{
    dfs(&matrix);
    cout << endl;
    getchar();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值