题目要求比其高的邻居要比本身的奖励多,那么最少也要多一个,所有我们可以找到所有的凹点,凹点如下三种情形。
找到所有的凹点后,我们就可以从凹点处开始向左右两个方向依次查找递增序列,其中每个高的都要比相邻的矮的多一个,比如1,2,5,4.我们找到凹点为1 和4,那么从1开始向左没有其他点,我们向右,依次得到2 比1高,2的糖果应该是1的基础上加1,为2, 5比2高,5的糖果是在2的基础上加1,为3。令一个凹点4, 向左,5比4高,5的糖果应该是在4的基础上加 1,为2,这时我们发现冲突了,从凹点1 开始,我们得到的5的糖果是3,但是从凹点 4 开始,我们得到的糖果数却为2 ,此时我们选择哪个呢?当然,如果要少的,当然是2,但是它却违反了题目中的限定条件,5如果为2 ,就不比2的糖果数多了,所以这时我们就应该选择最大的,这说明了什么呢?说明从左面开始向右到 5 得到的递增序列的长度大于从4开始向左到5得到的递增序列。也就是说,得到的糖果数的多少,取决于所构成的连续递增序列的长度。
class Solution:
def candy(self, A):
if len(A) == 0: return 0
candies = [1] * len(A)
#insert two guard at both bounder
#为了便于处理凹点,我们在左右边界各插入一个点作为哨兵,这样在比较的时候
#就不用额外处理边界点了。
A.insert(0, A[0])
A.append(A[-1])
#pits 用来存储所有的凹点下标
pits = []
for i in range(1, len(A) - 1):
if A[i] <= A[i - 1] and A[i] < A[i + 1] or \
A[i] <= A[i + 1] and A[i] < A[i - 1]:
pits.append(i)
#从左到右一次处理各个凹点
for i in pits:
# go left
j = i
while A[j - 1] > A[j]:
#因为A数组加入了哨兵的缘故,所以A和candies的下标不是严格对齐的,差了一个
if candies[j - 2] < candies[j - 1] + 1:
candies[j - 2] = candies[j - 1] + 1
j -= 1
else: break
# go right
j = i
while A[j + 1] > A[j]:
if candies[j] < candies[j - 1] + 1:
candies[j] = candies[j - 1] + 1
j += 1
else: break
return sum(candies)
这里我们需要一个额外的pits数组来存储所有的凹点,其实通过刚才我们的分析,另外一种实现方式已经出现了,就是从左开始,找递增序列,然后增加糖果,对于每个数,它和左边构成的递增序列与从右面构成的递增序列可能不一样,如上例中的5,跟左边够成的递增序列为 1,2 5,长度为3,跟右面的构成的递增序列为4,5,长度为2,而5最少的糖果数是取决于最长的递增序列的。所以我们就可以从左到右遍历一遍,然后再从右向左遍历一遍,取两次遍历的最大值。
class Solution:
def candy(self, A):
if len(A) == 0: return 0
candies = [1] * len(A)
#从左向右,按着递增来分配糖果
for i in range(1, len(A)):
if A[i] > A[i - 1]:
candies[i] = candies[i - 1] + 1
#从右向左,按着递增来分配糖果,并取最大值
for i in xrange(len(A) - 2, -1, -1):
if A[i] > A[i + 1] and candies[i] < candies[i + 1] + 1:
candies[i] = candies[i + 1] + 1
return sum(candies)