人工智能在能源电力领域会有什么应用
人工智能在能源电力领域的应用,总体来讲可以归纳为:传统方式的智能化改进,关键技术的延展与创新,多元因素的智能化融合。
细化来看,主要在以下几个方面:1.管理方式的升级在电力系统中,各方面的管理工作还存着的自动化、智能化程度偏低,即使有很多工作已经在智能化水平上有一定成果,但成果之间往往相互独立,未能充分发挥出有效的协同作用。
人工智能的作用之一就是,有效整合现有系统,发挥系统之间的协同效用,极大化发掘现有系统的潜在价值,实在管理优化。
2.关键领域的开拓能源电力系统已经存在并发展许多年,拥有比较成熟的体系,但限于技术水平,很多领域并未能得以有效发展。主要是大数据和云技术领域的开拓。
主要体现为:需求侧响应、负荷预测、设备管理、信息化管理、电力市场等。需求响应技术与用户行为特征息息相关,而对用户行为分析是基于历史数据的。
面对大时间跨度,大用户范围,多类型行为等多重因素,数据规模庞大,关联关系不易分析。大数据技术可以有效挖掘潜在的数据信息,强大的计算能力也可以解决数据规模过大的难题,进而得到更准确的用户行为分析。
负荷预测技术不仅与用户息息相关,影响因素更是多种多样,温度、湿度、季节、天气等等。
负荷预测方法多种多样,近些年基于R,Python等大数据分析的负荷预测方法开始浮现,想必随着更多人工智能技术的融入,可以有效解决历来面临的负荷预测精度问题。
设备管理是各行各业都面临的问题,尤其是长时间运行的功能性设备,何时进行必要的保养、检修或者更新,以往都是基于经验来决定的。
对设备历史运行资料(尤其是故障资料)进行分析,合理的安排设备的相应管理及操作,能更充分的发挥各设备的价值。
信息化管理是能源电力领域的必然趋势,但各类能源、各类角色的数据各不相同,难于统一管理,这将影响信息化的协同建设。
如何有效归整各类数据,提取关键信息,建立关联关系,是人工智能在推进信息化建设征程中的重要内容。电力市场是当下国刚的一大热点,虽然有大量国外成熟电力市场的实例,但本土化的过程并不容易。
负荷预测、金融行为、调度优化等,都需要新兴的计算技术予以支撑。3.多元因素的融合这对于多元,主要讲两个方面:多能源融合:能源始终是人类社会面临的终极问题。
将多种能源有效融合在一起,基于能源的分布、特点、效用等因素,制定更优的能源使用方案,是实现节能和可持续的重要方法。在这个过程中,不仅数据庞大,分析方法也极为复杂,这就需要人工智能大显身手了。
多技术融合:在前面讲能源互联网时,单独拿出了技术层面。不管是大数据、云计算还是信息互联,都是为了促进能源的融合,实现能源的互联网化,这也必定只是技术领域的冰山一角。
随着以后更多的新兴技术的涌现和更多成熟技术的应用,也必能创造更多可能。
谷歌人工智能写作项目:小发猫
AI的运转需要全球10%用电量,为什么真的可以撑得下AI的发展吗?
今天,世界上数以百万计的数据中心所占用的用电量还不到2%——这个统计数据包含了在它们庞大的服务器阵列上处理的各种工作负载rbsci。
AppliedMaterials估计,运行人工智能的服务器目前只占全球电力消耗量的0.1%。 其他的科技公司高管也发出了警告。
华为的安德斯安德烈(AndersAndrae)认为,到2025年,数据中心最终可能消耗全球十分之一的电力,不过他的估算涵盖了数据中心的所有用途,而不仅仅是人工智能。
落基山研究所的特别顾问乔纳森·库米(JonathanKoomey)则相对乐观。他预计,尽管人工智能相关活动呈井喷式增长,但数据中心的能源消耗在未来几年仍将保持相对平稳。
这些大相径庭的预测突显出,人工智能对大规模计算未来的影响以及对能源需求的最终影响存在着不确定性。 毫无疑问,人工智能电力消耗非常大。
训练和运行像深度学习模型这样的东西需要处理大量的数据,因而占用内存和处理器。人工智能研究机构OpenAI的一项研究表明,驱动大型人工智能模型所需的计算能力已经每三个半月翻一番。
AppliedMaterials自己也承认,它的预测是一种最糟糕的情况,意在突出缺乏软硬件新思维可能会造成的状况。
该公司的企业战略和市场情报主管桑迪普·巴吉卡尔(SundeepBajikar)表示,公司假定,随着时间的推移,被用来训练人工智能模型的信息组合将会发生改变,相对于文本和音频信息,视频和其他图像的占比将会攀升。
视觉数据的计算量更大,因此需要消耗更多的能量。 随着自动驾驶汽车和嵌入