《matlab神经网络30个案例分析》 第13章的SVM参数优化用的是什么方法? 代码如下
谷歌人工智能写作项目:神经网络伪原创
跪求bp神经网络输入层16个,输出层6个。关于爆破参数优化的源程序,谢谢大家。 30
文案狗。
%% BP算法function Out=bpnet(p,t,p_test)global S1 %隐层节点数,自己设置net=newff(minmax(p),[S1,6],{'tansig','purelin'},'trainlm');net.trainParam.epochs=1000;=0.00001;=0.01;net.trainParam.showWindow = false; %阻止训练窗口的弹出net.trainParam.showCommandLine = false; %阻止训练窗口的弹出net=train(net,p,t);Out=sim(net,p_test);end样本p和t自己准备好,一列为一个样本,归一化后,输入其中进行训练。
在BP网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。
目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般