扇形涂色问题

当一个圆形被等分成N个扇形并用M种颜色进行涂色,确保相邻扇形颜色不同时,涂色方法数可通过递推公式得出。对于N=1有M种,N=2有M(M-1)种,N=3有M(M-1)(M-2)种。当N≥4时,总涂色方法数为M*(M-1)^(N-1)减去首尾颜色相同的情况,即M*(M-1)^(N-2)。
摘要由CSDN通过智能技术生成

题目:将一个圆形等分成N个小扇形,将这些扇形标记为1,2,3,…,N。现在使用M种颜色对每个扇形进行涂色,每个扇形涂一种颜色,且相邻的扇形颜色不同,问有多少种不同的涂法?(N≥1,M≥3)

如果N=1,有M种涂法;

如果N=2,有M(M-1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值