- 博客(19)
- 资源 (2)
- 收藏
- 关注
原创 xgboost原理
这篇文章主要参考了陈天奇的14年的slice[1],算是一个中文翻译+自我理解的笔记吧。1.第一部分:有监督学习包括三部分:模型、参数和优化目标。此部分略过不提。2.第二部分:boosted tree1. 回归树(base learner)base learner是回归树,其决策规则与决策树(decision tree)类似,但是用来预测实数值,即每一个叶结点是一个实数,而不是如决策树那样的类标签。
2016-11-15 18:14:26 4182
原创 gbdt-源码分析
1. 源码分析源码阅读的是Python著名的库sklearn里的代码。sklearn里gbdt(sklearn/ensemble/gradient_boosting.py)相关的类有 GradientBoostingRegressor和GradientBoostingClassifier,共同的父类是BaseGradientBoosting.boost的基本实现在BaseGradientBoosti
2016-11-14 17:25:32 1604
原创 mysql 命令行导入大文件
省的忘记了,特此写一下。使用 mysqlimport 这个工具导入, 在sql的bin文件夹下。mysqlimport -- help 可查看详细的命令其中 默认为 mysqlimport dbName 导入文件的名字(其中导入文件的名字在数据库中必须有名字与其相对应的表)我用的两个命令:--fields-terminated-by= 用什么
2015-03-24 17:31:27 519
原创 hadoop 2.6 Eclipse 插件编译/配置/安装
1 hadoop 2.6 没有eclipse 插件的源码 从git clone https://github.com/winghc/hadoop2x-eclipse-plugin.git下的2 下载后查看hadoop2x-eclipse-plugin 目录下的readme.md编译命令为: [hdpusr@apclt eclipse-plugin]
2015-03-11 18:02:09 599
原创 hadoop 单节点和伪分布式安装配置
按照官方文档一步一步来即可。http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html注意的是伪分布式中: $ bin/hdfs dfs -mkdir /user/这句话的为你自己的机器名(用户名)还有一个waring :
2015-03-09 16:53:07 392
原创 简单算法的常用网站
1.http://www.robots.ox.ac.uk/~vgg/software/2.http://lear.inrialpes.fr/~verbeek/software.php3.http://people.kyb.tuebingen.mpg.de/pgehler/code/index.html4.http://shenzi.cs.uct.ac.za/~honspro
2014-10-23 17:11:45 377
转载 概率语言模型及其变形系列(1)-PLSA及EM算法
http://blog.csdn.net/yangliuy/article/details/8330640
2014-10-23 10:40:25 561
转载 java bloclqueue
转自:http://www.cnblogs.com/jackyuj/archive/2010/11/24/1886553.html
2014-09-27 09:38:22 435
原创 maven 安装 与Eclipse下 配置
Maven下载地址为:http://maven.apache.org/download.cgi。最新版本为3.2.1.新建环境变量MAVEN_HOME,值是maven解压后文件夹路径,并配置环境变量path如下图:
2014-08-18 16:40:14 398
转载 对Naive Bayesian classification 的理解
转载地址:http://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html
2014-07-02 10:25:08 607
转载 对决策树的理解 id3
详见 http://www.cnblogs.com/lufangtao/archive/2013/05/30/3103588.html
2014-06-26 15:53:55 460
原创 content-based recommendation 概述认识的强化版
参考:Content-based Recommendation SystemsContent-based Recommendation Systems 目的是找到 item 与用户偏好的相似度。1 item representationitem表示一般有两种:一种是结构化的数据,一般存储于数据库中。另外一种是非结构化的数据,比如一篇文档。非结构化的数据不好表达,一般将其
2014-06-24 18:40:37 755
原创 content-based 的初步理解
content-based recommendation 起源于information retrieval and informatio filtering research.1基本思路是选择与用户以往偏好相似的item ,content-based方法主要适用于text-based的推荐2主要方法: A . Content(s)表示 item s 的属性集(一
2014-06-23 17:17:17 3532
转载 zend studio 破解 安装 汉化等
1百度云地址:10.0.0.msi文件: http://pan.baidu.com/share/link?shareid=594171&uk=2835918805(recommended)juno汉化文件: http://pan.baidu.com/share/link?shareid=594170&uk=2835918805(recommended)2.破解文件 ZendSt
2014-06-17 16:03:16 481
原创 文献整理-1
文献1 :Understanding User Behavior in Online Social Networks: A Survey
2014-06-11 16:43:21 395
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人