计算机视觉
shitoucoming
这个作者很懒,什么都没留下…
展开
-
ckpt学习下
TensorFlow的模型文件文件结构介绍:–checkpoint_dir | |–checkpoint | |–MyModel.meta | |–MyModel.data-00000-of-00001 | |–MyModel.index Tensorflow模型主要包括两个方面内容:1)神经网络的结构图graph;2)已训练好的变量参数。因此Tensorflow模型主要包含两个文件:.meta文件该文件保存了tensorflow完整的网络图结构,.meta文件是pb格式,包转载 2020-09-23 17:12:05 · 384 阅读 · 0 评论 -
FocalLoss学习一下
FocalLossFocalLoss是对分类交叉熵损失函数的优化为什么能做难负样本挖掘呢?γ>0,会减少相对于好区分样本(就是负样本,也就是背景比较多的样本)的损失,而将重心转移到难区分的,而且比较容易误分类的样本(也就是正样本:背景不会占太多,或者叫难负样本:难区分的负样本,一般数据集中它们的数量少)上面来。下面来具体理解下。当预测概率值在0.6-1之间时,不管是预测物体还是背景,置信度比较高,也就是容易区分样本(远远大于0.5当然可信了)。当概率在0.5左右时,就比如特殊一点0.5吧,一原创 2020-09-13 16:15:22 · 388 阅读 · 0 评论 -
了解focal loss
Focal Loss理解 1. 总述Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。 2. 损失函数形式Focal loss是在交叉熵损失函数基础上进行的修改,首先回顾二分类交叉上损失:是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,输出概率越大损失越小。对于负样本而言,输出概率越小则损失越小。...转载 2020-09-10 17:07:09 · 235 阅读 · 0 评论 -
ValueError: Object arrays cannot be loaded when allow_pickle=False
代码是Deep Learning with Python中的:from keras.datasets import imdb(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)错误最后一行如下Object arrays cannot be loaded when allow_pickle=Fal...转载 2020-07-20 10:23:09 · 326 阅读 · 0 评论 -
理解tf.clip_by_value()用法
tf.clip_by_value(A, min, max):输入一个张量A,把A中的每一个元素的值都压缩在min和max之间。小于min的让它等于min,大于max的元素的值等于max。例如:import tensorflow as tf; import numpy as np; y = np.array([[8,2,1], [1,3,6]]) with tf.Session() as sess: print sess.run(tf.clip_by_value(y,原创 2020-07-13 17:15:17 · 585 阅读 · 0 评论 -
tensorflow slim库的使用
slim库的导入:import tensorflow as tfimport tensorflow.contrib.slim as slim常用函数:与tensorflow自带的函数相比,slim能够让我们不用重复写函数的参数。那么函数的参数写在哪里呢?核心方法就是slim.arg_scope。slim.arg_scopedef arg_scope(list_ops_or_scope, **kwargs) list_ops_or_scope:要用的函数的作用域,可以在需要使用的地方用@ad转载 2020-07-13 11:33:08 · 338 阅读 · 0 评论 -
pycharm中Mark Directory as 成 sources root 的作用
使用from…import添加非python的包时, 需要为python解释器指定搜索路径, 比如使用sys.path.insert(), 还可以指定PYTHONPATH, 我用的是PYTHONPATH, 编辑run的配置文件时突然看到"Add source roots to PYTHONPATH", 又突然联想到Mark Directory as, 于是就觉得把文件夹Mark Directory as成root就不用手动添加PYTHONPATH了, 果不其然将文件夹Mark Directory as成转载 2020-07-11 17:05:13 · 2012 阅读 · 0 评论 -
什么是fine-tuning?
什么是fine-tuning? 在实践中,由于数据集不够大,很少有人从头开始训练网络。常见的做法是使用预训练的网络(例如在ImageNet上训练的分类1000类的网络)来重新fine-tuning(也叫微调),或者当做特征提取器。 以下是常见的两类迁移学习场景:1 卷积网...转载 2020-07-03 16:27:33 · 190 阅读 · 0 评论 -
计算机视觉可能会用到的:数的取反操作,即a取反得~a,a可正可负
正数取反例如:a=60,60的二进制是0011 1100(最前面的0表示正数),,,(a取反~a ) 输出结果 -61 ,二进制解释:首先对数据的每个二进制位取反,即把1变为0,把0变为1,得 1100 0011(最前面的1表示负数),然后求在一个有符号二进制数的补码形式(方法是:负数的补码 = {原码符号位不变} + {数值位按位取反后+1}),也就是10111100,加一,就是10111101,即-61负数取反-2 二进制是110,取反是001,其补码还是001,即1x=-2,-x-1=1原创 2020-06-23 09:22:45 · 1326 阅读 · 0 评论 -
Opencv 中 waitkey()& 0xFF,“0xFF”的作用解释
这几日学习OpenCV,刚碰到这个表达式时,对于0xFF的作用不太理解,难道下面两个语句还有区别?(Esc的ASCII码为27,即判断是否按下esc键)if cv2.waitkey(30)==27if cv2.waitkey(30)&0xff==27疑惑首先&运算即“and”运算。其次0xFF是16进制数,对应的二进制数为1111 1111。然后cv2.waitkey(delay)函数1....转载 2020-05-08 18:35:31 · 2321 阅读 · 0 评论 -
图片标注工具LabelImg的使用
安装方式是windows方式(下载labelImg.exe,不用安装,双击直接使用),没有用python方式。。。原创 2020-05-06 10:06:43 · 1134 阅读 · 0 评论 -
解决labelImg闪退
labelImg路径中不能出现中文,如果有,换个不带中文的路径。原创 2020-05-05 16:11:53 · 1133 阅读 · 0 评论 -
python3.7 -openCV安装与测试(Windows)
1.首先进行whl文件下载,下载地址是:https://www.lfd.uci.edu/~gohlke/pythonlibs/因为我安装的是python3.7版本,所以我下载的是opencv_python-4.2.0-cp37-cp37m-win_amd64.whl注意:安装时要下载与python版本相匹配的opencv文件,且opencv要安装后要复制到Anaconda3\Lib\site-...原创 2020-05-04 22:07:38 · 570 阅读 · 0 评论