背包总结

//*******************************************************
P01: 01背包
二维:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
一维:for i=1...N
        for v=V...0
           f[v]=max{f[v],f[c-v[i]]+w[i]}
尽量装满:初始化 f[0...V]=0 ;
恰好装满:初始化 f[0]=0 f[1...V]=-∞;



//*******************************************************
P02: 完全背包
状态转移方程:f[i][v]=max{f[i-1][v-k*w[i]]+k*w[i],f[i][v]};
二进制优化:将第i种物品拆成c[i]*2^k,w[i]*2^k的若干件,c[i]*2^k<=V


一维数组: for i=1...N
             for v=0...V  // 联想到01背包,之所以逆序是为了保证只用一次
                f[v]=max{f[v],f[v-cost]+weight}



//*******************************************************
P03: 多重背包
类似完全背包,优化思想可以是二进制,也可以转化成01背包
伪代码:procedure MultiplePack(cost,weight,amount)
           if cost*amount>=V
              CompletePack(cost,weight)
              return 
           int k=1
           while k<num
              ZeroOnePack(k*cost,k*weight)
              amount-=k;
              k=k*2;
           ZeroOnePack(amount*cost,amount*cost)
拆分思想....



//*******************************************************
P04: 混合背包
01背包和完全背包混合
     for i=1...N
        if 第i件是01背包
           for v=V...0
              f[v]=max{f[v],f[v-c[i]]+w[i]}
        else if 第i件是完全背包
           for v=0...V
              f[v]=max{f[v],f[v-c[i]]+w[i]}
若是混入多重背包,一样进行整体的判断和调用




//*******************************************************
P05: 二维费用背包
状态转移方程:f[i][u][v]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}
方法同上:只取一次用逆序,无限次用顺序,如多重背包就拆分
   



//*******************************************************
P06: 分组背包
物品被分为若干组,每组中最多选一件
f[k][v]表示前k组物品花费v能取得的最大权值
状态方程: f[k][v]=max{f[k-1][v-c[i]]+w[i]}  物品i属于第k组
一维: for 1...k
          for v=V...0   // 保证一组最多取一个
             for 属于第k组的i
                f[v]=max{f[v],f[v-c[i]]+w[i]}



//*******************************************************
P07: 依赖背包 
i依赖于j,表示若选物品i,则必须选物品j
可以对应成 P06 物品组问题
//不想看 pass



//*******************************************************
P08: 泛化物品
物品没有固定的价值,随分配的费用而变化
//喵的,太抽象了,不看。。。pass




//*******************************************************
P09: 背包问题问法
[1] 最优值:     f[n][V]  f[V]
[2] 字典序最小: 先对物品逆序排列,转移方程不变,输出时
从N到1,f[i][v]==f[i-1][v]&&f[i][v]==f[i-1][v-c[i]]+w[i]
时输出
[3] 方案数: f[i][v]=sum{f[i-1][v],f[i][v-c[i]]} 
初始f[0][0]=1
[4] 最优方案数: for i=1..N
   for v=0..V
        f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
        g[i][v]=0
        if(f[i][v]==f[i-1][v])
            inc(g[i][v],g[i-1][v]
        if(f[i][v]==f[i-1][v-c[i]]+w[i])
            inc(g[i][v],g[i-1][v-c[i]])
[5] 次优解,第k优解:有序队列(如果开三维,不知道会不会错)
可以先开两个队列,判断之后合并,再保存状态
//*******************************************************
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
01背包问题是动态规划中的一个经典问题,它的解法也非常经典,下面是我对该问题的动态规划总结。 1. 状态定义 定义一个二维数组dp[i][j],其中i表示当前考虑到第i个物品,j表示当前背包容量为j,dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。 2. 状态转移方程 对于每个物品,我们可以选择将其放入背包,也可以选择不放入背包,因此状态转移方程如下: 如果不将第i个物品放入背包,则 dp[i][j] = dp[i - 1][j] 即前i-1个物品已经在容量为j的背包中的最大价值就是dp[i - 1][j]。 如果将第i个物品放入背包,则 dp[i][j] = dp[i-1][j-w[i]] + v[i] 即前i-1个物品在容量为j-w[i]的背包中的最大价值加上第i个物品的价值v[i]。 最终的状态转移方程为: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]) 3. 边界条件 当物品数量为0时,dp[0][j]都等于0;当背包容量为0时,dp[i][0]都等于0。 4. 求解最优解 最终的最大价值为dp[n][W],其中n表示物品数量,W表示背包容量。 5. 代码实现 以下是01背包问题的动态规划代码实现,其中w和v分别表示物品的重量和价值,n和W表示物品数量和背包容量: ```python def knapsack(w, v, n, W): dp = [[0] * (W+1) for _ in range(n+1)] for i in range(1, n+1): for j in range(1, W+1): if j < w[i-1]: dp[i][j] = dp[i-1][j] else: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1]) return dp[n][W] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值