[POJ1038]Bugs Integrated, Inc. && 状压DP

覆盖模型的状压DP 用3进制数表示i-1 ~ i行的覆盖情况 对于读入的残缺格点进行预处理标记 然后DFS构造转移一下就行

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
using namespace std;
const int P3 = 3 * 3 * 3, P2 = 3 * 3;
const int MAXM = 10;
const int MAXS = P3 * P3 * P3 * 3;
int s1, s2;
int n, S, m, K, Now, row, ans;
int Map[2][200][MAXM+10], d[2][MAXS+10];
void dfs(int cur, int s1, int s2, int cnt)
{
	if(cur > m + 1) return ;
	if(cur == m+1) {
		d[Now][s1] = max(d[Now][s1], d[Now^1][s2] + cnt);
		ans = max(ans, d[Now][s1]);
		return ;
	}
	if(!Map[0][row][cur])
		dfs(cur+3, 
				s1 * P3 + 2 * P2 + 2 * 3 + 2, 
				s2 * P3 + P2 + 3 + 1, cnt+1);
	if(!Map[1][row][cur])
		dfs(cur+2,
		        s1 * P2 + 2 * 3 + 2,
				s2 * P2, cnt+1);
	dfs(cur+1, s1 * 3 + 1, s2 * 3 + 2, cnt);
	dfs(cur+1, s1 * 3, s2 * 3 + 1, cnt);
	dfs(cur+1, s1 * 3 + 2, s2 * 3 + 2, cnt);
}
int main()
{
	int T; scanf("%d", &T); while(T--) {
		ans = 0; memset(Map, 0, sizeof(Map) + sizeof(d));
		scanf("%d%d%d", &n, &m, &K);
		for(int ii = 1; ii <= K; ii++)
		{
			int x, y; scanf("%d%d", &x, &y);
			for(int i = 0; i < 2; i++)
				for(int j = 0; j < 3; j++)
				{
					if(y - i > 0) Map[1][x+j][y-i] = 1;
					if(y - j > 0) Map[0][x+i][y-j] = 1;
				}
		}
		for(int i = 1; i <= m; i++) Map[1][2][i] = 1, Map[0][1][i] = Map[1][1][i] = 1;
		for(row = 1; row <= n; row++)
		{
			Now = row & 1;
			memset(d[Now], 0, sizeof(d[Now]));
			dfs(1, 0, 0, 0);
		}
		cout << ans << '\n';
	}
}


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值