join一般都是在reduce阶段完成的,因为在map阶段无法使同样key值的分在一个map上。
而在reduce阶段的join,hive默认把左表数据放在缓存中,右边表的数据做流数据。
如果你想更改这种模式的话,就用/*+streamtable(表名)*/来指定你想要做为流数据的表。
最好每次写join时,小表放左边,大表放右边。
试过几十万的表和1亿的表,在hive不转为map join的情况下,俩表互换位置能节省10分钟时间,原来800多秒,变为100多秒.DWS_ITM_SKU_D
mapjoin关键字是指定在map阶段发生join,且以指定的表在map阶段从缓存中读,一般使用在两个表的数据量悬殊很大,有一个超级小表的情况下,目前hive能做到自动判断并转为map join。
而在reduce阶段的join,hive默认把左表数据放在缓存中,右边表的数据做流数据。
如果你想更改这种模式的话,就用/*+streamtable(表名)*/来指定你想要做为流数据的表。
最好每次写join时,小表放左边,大表放右边。
试过几十万的表和1亿的表,在hive不转为map join的情况下,俩表互换位置能节省10分钟时间,原来800多秒,变为100多秒.DWS_ITM_SKU_D
mapjoin关键字是指定在map阶段发生join,且以指定的表在map阶段从缓存中读,一般使用在两个表的数据量悬殊很大,有一个超级小表的情况下,目前hive能做到自动判断并转为map join。