1. 题目:
在数组A[0…n-1]中,有所谓的魔术索引,满足条件A[i] = i。给定一个有序整数数组,元素值各不相同,编写一种方法找出魔术索引,若有的话,在数组A中找出一个魔术索引。
进阶:如果数组元素有重复值,又该如何处理呢?
2. 解题思路:
该问题实际上需要实现包含“元素唯一”和“有重复值”两种情况的解决方案:
case1 - 元素唯一,可以采用二分查找法来实现。
case2 - 元素可能有重复值,可以采用分治法来实现。
3. 图解流程
下面使用多张图,分别演示两种方法(case1和case2)的查找流程,使用以下测试用例:
case1(元素唯一):[-10, -5, 0, 3, 7]
case2(有重复值):[-10, -5, 2, 2, 2, 3, 4, 7, 9, 12, 13]
3.1:case1流程图解
图示1:初始状态,第1次二分
初始mid=2,nums[2]=0 < 2 → 搜索右半部分
索引: 0 1 2 3 4
值 : [-10, -5, 0, 3, 7]
↑ ↑ ↑
left mid right
图示2:第2次二分后
nums[3]=3 == 3 → 找到魔术索引3
索引: 3 4
值: [ 3, 7]
↑ ↑
left right
(mid=3)
图示3:返回结果
找到魔术索引:3
3.2:case2流程图解
图示1:初始调用
mid=5, nums[5]=3 < 5 → 需要检查左右两部分
索引: 0 1 2 3 4 5 6 7 8 9 10
值: [-10, -5, 2, 2, 2, 3, 4, 7, 9, 12, 13]
↑ ↑ ↑
left mid right
图示2:搜索左半部分
mid=1, nums[1]=-5 < 1 → 继续搜索当前区间的右半部分
左半部分范围缩小(因nums[5]=3):
实际检查范围:left=0, right=min(4,3)=3
索引: 0 1 2 3
值: [-10, -5, 2, 2]
↑ ↑ ↑
left mid right
图示3:当前区间的右半部分
nums[2]=2 == 2 → 找到魔术索引2
索引: 2 3
值: [ 2, 2]
↑ ↑
left right
(mid=2)
图示4:提前返回
找到第一个魔术索引:2(不再检查右半部分)
3.3 关键步骤对比表
步骤 | 二分查找法 | 分治法 |
---|---|---|
初始检查 | 直接比较中间值 | 比较中间值后需检查两侧 |
移动方向 | 严格向左或向右 | 可能同时搜索左右(但范围优化) |
终止条件 | nums[mid]==mid | 优先返回最早找到的有效结果 |
时间复杂度 | O(log n) | 最坏O(n),平均更好 |
4. 代码完整实现(C++):
#include <iostream>
#include <vector>
// 二分查找法(case1)
int findMagicIndexUnique(const std::vector<int>& nums) {
int left = 0;
int right = nums.size() - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == mid) {
return mid; // 找到魔术索引
} else if (nums[mid] < mid) {
left = mid + 1; // 魔术索引只能在右半部分
} else {
right = mid - 1; // 魔术索引只能在左半部分
}
}
return -1; // 未找到
}
// 分治法(case2)
int findMagicIndexDuplicateHelper(const std::vector<int>& nums,
int left,
int right) {
if (left > right) {
return -1;
}
int mid = left + (right - left) / 2;
int midValue = nums[mid];
if (midValue == mid) {
return mid; // 找到魔术索引
}
// 递归搜索左半部分(注意可能的最小范围)
int leftEnd = std::min(mid - 1, midValue);
int leftResult = findMagicIndexDuplicateHelper(nums, left, leftEnd);
if (leftResult != -1) {
return leftResult;
}
// 递归搜索右半部分(注意可能的最小范围)
int rightStart = std::max(mid + 1, midValue);
return findMagicIndexDuplicateHelper(nums, rightStart, right);
}
int findMagicIndexDuplicate(const std::vector<int>& nums) {
return findMagicIndexDuplicateHelper(nums, 0, nums.size() - 1);
}
int main() {
// 测试元素唯一的情况
std::vector<int> uniqueNums = {-10, -5, 0, 3, 7};
std::cout << "唯一元素测试: " << findMagicIndexUnique(uniqueNums)
<< std::endl; // 输出3
// 测试有重复元素的情况
std::vector<int> duplicateNums = {-10, -5, 2, 2, 2, 3, 4, 7, 9, 12, 13};
std::cout << "重复元素测试: " << findMagicIndexDuplicate(duplicateNums)
<< std::endl; // 输出2
return 0;
}
5. 代码分析:
算法说明:
case1 - 二份查找法:
- 时间复杂度:O(log n) —— 使用二分查找
- 空间复杂度:O(1)
- 利用数组有序且元素唯一的特性,通过比较中间值与索引的关系决定搜索方向
case2 - 分治法:
- 时间复杂度:最坏O(n),但平均优于线性搜索
- 空间复杂度:O(log n) —— 递归调用栈
- 采用分治法,但需要同时搜索左右两部分,因为重复值可能导致魔术索引出现在任意一侧
- 通过
std::min
和std::max
优化搜索范围,跳过不可能的区域
关键点:
- 元素唯一时,可以利用严格的单调性进行二分
- 有重复值时,必须检查左右两部分,但可以适当缩小搜索范围
- 两种实现都返回找到的第一个魔术索引(不保证是最小的)
6. 运行结果:
唯一元素测试: 3
重复元素测试: 2
感谢您的阅读。原创不易,如您觉得有价值,请点赞,关注。