大厂高频经典面试题(47)-魔术索引

1. 题目:

在数组A[0…n-1]中,有所谓的魔术索引,满足条件A[i] = i。给定一个有序整数数组,元素值各不相同,编写一种方法找出魔术索引,若有的话,在数组A中找出一个魔术索引。

进阶:如果数组元素有重复值,又该如何处理呢?

2. 解题思路:

该问题实际上需要实现包含“元素唯一”和“有重复值”两种情况的解决方案:

case1 - 元素唯一,可以采用二分查找法来实现。

case2 - 元素可能有重复值,可以采用分治法来实现。

3. 图解流程

下面使用多张图,分别演示两种方法(case1和case2)的查找流程,使用以下测试用例:

case1(元素唯一):[-10, -5, 0, 3, 7]

case2(有重复值):[-10, -5, 2, 2, 2, 3, 4, 7, 9, 12, 13]


3.1:case1流程图解

图示1:初始状态,第1次二分

初始mid=2,nums[2]=0 < 2 → 搜索右半部分

索引:    0   1   2   3   4
值  : [-10, -5,  0,  3,  7]
         ↑       ↑       ↑
       left     mid     right

图示2:第2次二分后

nums[3]=3 == 3 → 找到魔术索引3

索引: 3   4
值: [ 3,  7]
      ↑   ↑
    left right
      (mid=3)

图示3:返回结果

找到魔术索引:3

3.2:case2流程图解

图示1:初始调用

mid=5, nums[5]=3 < 5 → 需要检查左右两部分

索引: 0    1  2   3   4   5   6   7   8   9  10
值: [-10, -5, 2,  2,  2,  3,  4,  7,  9, 12, 13]
      ↑                   ↑                  ↑
     left                mid                right

图示2:搜索左半部分

mid=1, nums[1]=-5 < 1 → 继续搜索当前区间的右半部分

左半部分范围缩小(因nums[5]=3):
实际检查范围:left=0, right=min(4,3)=3

索引: 0    1   2   3
值: [-10, -5,  2,  2]
      ↑    ↑       ↑
     left mid     right

图示3:当前区间的右半部分

nums[2]=2 == 2 → 找到魔术索引2

索引: 2   3
值: [ 2,  2]
      ↑   ↑
    left right
      (mid=2)

图示4:提前返回

找到第一个魔术索引:2(不再检查右半部分)

3.3 关键步骤对比表

步骤二分查找法分治法
初始检查直接比较中间值比较中间值后需检查两侧
移动方向严格向左或向右可能同时搜索左右(但范围优化)
终止条件nums[mid]==mid优先返回最早找到的有效结果
时间复杂度O(log n)最坏O(n),平均更好

4. 代码完整实现(C++):

#include <iostream>
#include <vector>

// 二分查找法(case1)
int findMagicIndexUnique(const std::vector<int>& nums) {
    int left = 0;
    int right = nums.size() - 1;

    while (left <= right) {
        int mid = left + (right - left) / 2;

        if (nums[mid] == mid) {
            return mid;  // 找到魔术索引
        } else if (nums[mid] < mid) {
            left = mid + 1;  // 魔术索引只能在右半部分
        } else {
            right = mid - 1;  // 魔术索引只能在左半部分
        }
    }

    return -1;  // 未找到
}

// 分治法(case2)
int findMagicIndexDuplicateHelper(const std::vector<int>& nums,
                                  int left,
                                  int right) {
    if (left > right) {
        return -1;
    }

    int mid = left + (right - left) / 2;
    int midValue = nums[mid];

    if (midValue == mid) {
        return mid;  // 找到魔术索引
    }

    // 递归搜索左半部分(注意可能的最小范围)
    int leftEnd = std::min(mid - 1, midValue);
    int leftResult = findMagicIndexDuplicateHelper(nums, left, leftEnd);
    if (leftResult != -1) {
        return leftResult;
    }

    // 递归搜索右半部分(注意可能的最小范围)
    int rightStart = std::max(mid + 1, midValue);
    return findMagicIndexDuplicateHelper(nums, rightStart, right);
}

int findMagicIndexDuplicate(const std::vector<int>& nums) {
    return findMagicIndexDuplicateHelper(nums, 0, nums.size() - 1);
}

int main() {
    // 测试元素唯一的情况
    std::vector<int> uniqueNums = {-10, -5, 0, 3, 7};
    std::cout << "唯一元素测试: " << findMagicIndexUnique(uniqueNums)
              << std::endl;  // 输出3

    // 测试有重复元素的情况
    std::vector<int> duplicateNums = {-10, -5, 2, 2, 2, 3, 4, 7, 9, 12, 13};
    std::cout << "重复元素测试: " << findMagicIndexDuplicate(duplicateNums)
              << std::endl;  // 输出2

    return 0;
}

5. 代码分析:

算法说明:

case1 - 二份查找法

  • 时间复杂度:O(log n) —— 使用二分查找
  • 空间复杂度:O(1)
  • 利用数组有序且元素唯一的特性,通过比较中间值与索引的关系决定搜索方向

case2 - 分治法

  • 时间复杂度:最坏O(n),但平均优于线性搜索
  • 空间复杂度:O(log n) —— 递归调用栈
  • 采用分治法,但需要同时搜索左右两部分,因为重复值可能导致魔术索引出现在任意一侧
  • 通过std::minstd::max优化搜索范围,跳过不可能的区域

关键点

  • 元素唯一时,可以利用严格的单调性进行二分
  • 有重复值时,必须检查左右两部分,但可以适当缩小搜索范围
  • 两种实现都返回找到的第一个魔术索引(不保证是最小的)

6. 运行结果:

唯一元素测试: 3
重复元素测试: 2

感谢您的阅读。原创不易,如您觉得有价值,请点赞,关注。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水草

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值