题目
最大公共子串长度问题就是: 求两个串的所有子串中能够匹配上的最大长度是多少。
比如:"abcdkkk" 和 "baabcdadabc", 可以找到的最长的公共子串是"abcd",所以最大公共子串长度为 4。
下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。
请分析该解法的思路,并补全划线部分缺失的代码。
import java.util.Scanner; public class Main { static int f(String s1, String s2) { char[] c1 = s1.toCharArray(); char[] c2 = s2.toCharArray(); int[][] a = new int[c1.length+1][c2.length+1]; int max = 0; for(int i=1; i<a.length; i++){ for(int j=1; j<a[i].length; j++){ if(c1[i-1]==c2[j-1]) { a[i][j] = __________________________; if(a[i][j] > max) max = a[i][j]; } } } return max; } public static void main(String[] args){ int n = f("abcdkkk", "baabcdadabc"); System.out.println(n); System.out.println(f("aaakkkabababa", "baabababcdadabc")); System.out.println(f("abccbaacbcca", "ccccbbbbbaaaa")); System.out.println(f("abcd", "xyz")); System.out.println(f("ab", "ab")); } }
思想:(注意是连续相同的子串,不是子序列)
动态规划, a[i][j]的意义是,前i位字符串s1和前j位字符串s2之间的最大公共子串长度
对于
if(c1[i-1]==c2[j-1]) {
a[i][j] = a[i-1][j-1]+1;
if(a[i][j] > max) max = a[i][j];
}
s1字符串第i位和s2字符串第j位相等时,那么前i位字符串s1和前j位字符串s2之间的最大公共子串长度+1,如果a[i-1][j-1]=0说明刚发现相同字符,或者再次之前连续相同的字符串断开了,如果a[i-1][j-1]=0则说明已经之前已经发现连续相同子串,此次又连续了
代码:
package lanqiaobei;
import java.util.Scanner;
public class zuidagonggongzichuan
{
static int f(String s1, String s2)
{
char[] c1 = s1.toCharArray();
char[] c2 = s2.toCharArray();
int[][] a = new int[c1.length+1][c2.length+1];
int max = 0;
// System.out.println("a长度"+a.length);
for(int i=1; i<a.length; i++){ //a.length是二维数组行长度
for(int j=1; j<a[i].length; j++){
if(c1[i-1]==c2[j-1]) {
a[i][j] = a[i-1][j-1]+1;
if(a[i][j] > max) max = a[i][j];
}
}
}
return max;
}
public static void main(String[] args){
int n = f("abcdkkk", "baabcdadabc");
System.out.println(n);
System.out.println(f("aaakkkabababa", "baabababcdadabc"));
System.out.println(f("abccbaacbcca", "ccccbbbbbaaaa"));
System.out.println(f("abcd", "xyz"));
System.out.println(f("ab", "ab"));
}
}