语音识别
文章平均质量分 87
Shmily_Young
爱生活上面吃喝玩乐,也爱程序之间摸爬滚打。
爱逛街,也爱debug到扑街,爱爬山打球,也爱想算法抓破头。
展开
-
kaldi安装及yesno实例
Kaldi是一个非常强大的语音识别工具库,主要由Daniel Povey开发和维护。目前支持GMM-HMM、SGMM-HMM、DNN-HMM等多种语音识别的模型的训练和预测。其中DNN-HMM中的神经网络还可以由配置文件自定义,DNN、CNN、TDNN、LSTM以及Bidirectional-LSTM等神经网络结构均可支持。目前在Github上这个项目依旧非常活跃,可以在 https://githu原创 2017-07-03 16:05:44 · 1443 阅读 · 0 评论 -
kaldi timit实例运行全过程
第一步:准备timit的数据包 1.下载timit数据包,我已经上传到百度云盘—链接http://pan.baidu.com/s/1qYkDora 2.将timit数据包TIMIT.zip从Windows加载到linux服务器上(我用的服务器,当然你们可以用虚拟机)打开SecureCRT,点击链接SFTP会话,(你需要提前将TIMIT.zip放在原创 2017-07-17 17:43:41 · 9558 阅读 · 5 评论 -
kaldi特征和模型空间转换
kaldi特征和模型空间转换博主话:这篇博客是对kaldi官网中Feature and model-space transforms in Kaldi 的翻译,因为不是专业翻译人士,接触kaldi时间也不长,所以难免有纰漏之处,希望读者如果有更好的建议和意见,可以在下面留言,有助于更好的交流,谢谢大家介绍Kaldi代码目前支持许多功能和模型空间的转换和预原创 2017-08-07 18:55:33 · 4209 阅读 · 2 评论 -
MLLT(最大似然线性变换)
主要目的是:在最大似然(ML)准则下使用一个线性变换矩阵对参数特征矢量进行解相关。在ML准则下,评价一个模型‘好坏’的标准是训练数据与模型匹配的似然度,如果似然度越高的话,我们说这个模型越好。MLLT的作者给出了在最大似然准则下(ML)使用对角协方差矩阵的缺点,及其对训练数据集描述似然度的损失。原创 2017-08-10 14:26:29 · 5057 阅读 · 2 评论 -
声学模型概述
这篇博客是关于声学模型的简单介绍。输出概率声学模型的输入是由特征提取模块提取的特征(比如mfcc特征)。一般来说,这些特征是多维的向量,并且其取值可以是离散或连续的。原创 2017-08-07 09:54:00 · 8083 阅读 · 0 评论