背包系列问题详解

这篇博客探讨了动态规划在解决背包问题中的应用,包括0-1背包、子集背包和完全背包问题。通过Java代码示例展示了如何使用动态规划算法找到最优解,并对代码进行了优化,将二维动态规划数组简化为一维。此外,还介绍了如何判断一个数组是否能被分割成两个和相等的子集。
摘要由CSDN通过智能技术生成

背包问题

0-1背包问题
  • 题目
    给你一个可装载重量为 W 的背包和 N 个物品,每个物品有重量和价值两个属性。其中第 i 个物品的重量为 weight[i],价值为 value[i],现在让你用这个背包装物品,最多能装的价值是多少?
样例:
N = 3, W = 4
wt = [2, 1, 3]
val = [4, 2, 3]
结果:
6
解释:
选择前两件物品装进背包,总重量 3 小于 W,可以获得最大价值 6。
  • Java代码实现模板:
public class Main{
    public static void main(String[] args) {
        //N代表物品的数量,M代表背包的容量
        int N=3,M=4;
        int[] weight={2,1,3};
        int[] value={4,2,3};
        //定义动态规划的数组,dp[i][w]代表前i个物品,当前背包容量为w,这种情况下可以装的最大的价值是dp[i][w]
        int[][] dp = new int[N + 1][M + 1];
        for (int i = 1; i <= N; i++) {
            for (int j = 1; j <= M; j++) {
                if(weight[i-1]>j){  //第i个物品的重量大于容量j,选择不装入
                    dp[i][j]=dp[i-1][j];
                }else{              //在装入和不装入中选择最优的
                    dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-weight[i-1]]+value[i-1]);
                }
            }
        }
        System.out.println(dp[N][M]);
        /*
        * 单纯的求解背包能装的最大的容量就已经结束
        * 下面的代码是求出了装入的物品具体的号码是哪一个
        * */
        boolean[] isAdd = new boolean[N+1];
        for (int i = N; i>= 1;i--){
            if (dp[i][M] == dp[i-1][M])
                isAdd[i] = false;
            else{
                isAdd[i] = true;
                //最大重量-当前重量...求剩余重量
                M -= weight[i-1];
            }
        }
        for (int i = 1; i <=N; i++) {
            if(isAdd[i])System.out.println("物品序号:"+i);
        }
    }
}
子集背包问题
  • 题目:
    输入一个只包含正整数的非空数组 nums,请你写一个算法,判断这个数组是否可以被分割成两个子集,使得两个子集的元素和相等。
输入 nums = [1,5,11,5],算法返回 true,因为 nums 可以分割成 [1,5,5] 和 [11] 这两个子集。
输入 nums = [1,3,2,5],算法返回 false,因为 nums 无论如何都不能分割成两个和相等的子集。
  • Java代码实现模板
public class Main{
    public static void main(String[] args) {
        int[] nums = new int[]{1,3,2,5};
        int sum=0;
        for (int num : nums) sum += num;
        // 和为奇数时,不可能划分成两个和相等的集合
        if (sum % 2 != 0) {
            System.out.println(false);
            return;
        }
        int n = nums.length;
        sum = sum / 2;
        boolean[][] dp = new boolean[n + 1][sum + 1];
        //初始化,背包没有空间的时候就相当于装满了
        for (int i = 0; i <= n; i++)
            dp[i][0] = true;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= sum; j++) {
                if (j - nums[i - 1] < 0) {
                    // 背包容量不足,不能装入第 i 个物品
                    dp[i][j] = dp[i - 1][j];
                } else {
                    // 装入或不装入背包
                    dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i - 1]];
                }
            }
        }
        System.out.println(dp[n][sum]);
    }
}
  • 代码优化,二维dp数组变一维
public class Main{
    public static void main(String[] args) {
        int[] nums = new int[]{1,3,7,5};
        int sum = 0;
        for (int num : nums) sum += num;
        // 和为奇数时,不可能划分成两个和相等的集合
        if (sum % 2 != 0) {
            System.out.println(false);
            return ;
        }
        int n = nums.length;
        sum = sum / 2;
        boolean[] dp = new boolean[sum + 1];

        // base case
        dp[0] = true;

        for (int i = 0; i < n; i++) {
            for (int j = sum; j >= 0; j--) {
                if (j - nums[i] >= 0) {
                    dp[j] = dp[j] || dp[j - nums[i]];
                }
            }
        }
        System.out.println(dp[sum]);
    }
}
完全背包
  • 题目
    给定不同面额的硬币 coins 和一个总金额 amount,写一个函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
  • 样例
输入 amount = 5, coins = [1,2,5]
算法应该返回 4,因为有如下 4 种方式可以凑出目标金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
  • Java代码实现
public class Main{
    public static void main(String[] args) {
        int[] coins = new int[]{1,2,5};
        int amount = 5;
        int n = coins.length;
        int[][] dp =new int[n + 1][amount + 1];
        // 初始化,背包容量为0,可以装满
        for (int i = 0; i <= n; i++)
            dp[i][0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= amount; j++)
                if (j - coins[i-1] >= 0)
                    dp[i][j] = dp[i - 1][j]
                            + dp[i][j - coins[i-1]];
                else
                    dp[i][j] = dp[i - 1][j];
        }
        System.out.println(dp[n][amount]);
    }
}
  • 代码优化,二维dp数组变一维
public class Main{
    public static void main(String[] args) {
        int[] coins = new int[]{1,2,5};
        int amount = 5;
        int n = coins.length;
        int[] dp = new int[amount + 1];
        dp[0] = 1; // base case
        for (int i = 0; i < n; i++)
            for (int j = 1; j <= amount; j++)
                if (j - coins[i] >= 0)
                    dp[j] = dp[j] + dp[j-coins[i]];
        System.out.println(dp[amount]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西瓜程序设计

您的打赏将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值