ZJUT12-DAY1 主席树

众所周知,面对大师们的各种究极数据结构,我们只有膜拜的份。想当年还在苦苦挣扎区间最大值的时候,巨佬们已经在赛场上现场手撸区间第K大了。(所以人们就这么喜欢人名命名法嘛。。。)
好的,现在我也会了。(希望明天起来我还记得)
(下面本应该有分析)

#include <bits/stdc++.h>
#define maxn 200010
using namespace std;
int a[maxn], b[maxn], n, m, q, p, sz;
int Left[maxn << 5], Right[maxn << 5], sum[maxn << 5], Root[maxn]; //本节点的左儿子,右儿子,权值,Root存储对于第i个点,当前转移自第几个根节点
void build(int &Root, int l, int r)                           //建立一颗空的树以供参考
{
    Root = ++sz;
    if (l == r)
        return;
    int mid = (l + r) >> 1;
    build(Left[Root], l, mid);
    build(Right[Root], mid + 1, r);
}

int update(int o, int l, int r) //更新节点o,刚进来的时候是从根节点开始更新的
{
    int oo = ++sz;
    Left[oo] = Left[o], Right[oo] = Right[o], sum[oo] = sum[o] + 1;
    if (l == r)
        return oo;
    int mid = (l + r) >> 1;
    if (mid >= p)
        Left[oo] = update(Left[oo], l, mid);
    else
        Right[oo] = update(Right[oo], mid + 1, r);
    return oo;
}

int query(int u, int v, int l, int r, int k) //利用前缀和的思想,将两个区间相减得到当前区间的线段树并查询第k个值在哪里
{
    int mid = (l + r) >> 1;
    int x = sum[Left[v]] - sum[Left[u]];
    if (l == r)
        return l;
    if (x >= k) //大于则说明在这棵树之前加入,反之则在这棵树之后加入
        return query(Left[u], Left[v], l, mid, k);
    else
        return query(Right[u], Right[v], mid + 1, r, k - x);
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; ++i)
        scanf("%d", &a[i]), b[i] = a[i];
    sort(b + 1, b + 1 + n);
    q = unique(b + 1, b + 1 + n) - b - 1;
    build(Root[0], 1, q);
    for (int i = 1; i <= n; ++i)
    {
        p = lower_bound(b + 1, b + 1 + q, a[i]) - b;
        Root[i] = update(Root[i - 1], 1, q);
    }
    for (int i = 1; i <= m; i++)
    {
        int l, r, k;
        scanf("%d%d%d", &l, &r, &k);
        printf("%d\n", b[query(Root[l - 1], Root[r], 1, q, k)]);
    }
    return 0;
}

可持续化线段树(主席树)luogu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值