众所周知,面对大师们的各种究极数据结构,我们只有膜拜的份。想当年还在苦苦挣扎区间最大值的时候,巨佬们已经在赛场上现场手撸区间第K大了。(所以人们就这么喜欢人名命名法嘛。。。)
好的,现在我也会了。(希望明天起来我还记得)
(下面本应该有分析)
#include <bits/stdc++.h>
#define maxn 200010
using namespace std;
int a[maxn], b[maxn], n, m, q, p, sz;
int Left[maxn << 5], Right[maxn << 5], sum[maxn << 5], Root[maxn]; //本节点的左儿子,右儿子,权值,Root存储对于第i个点,当前转移自第几个根节点
void build(int &Root, int l, int r) //建立一颗空的树以供参考
{
Root = ++sz;
if (l == r)
return;
int mid = (l + r) >> 1;
build(Left[Root], l, mid);
build(Right[Root], mid + 1, r);
}
int update(int o, int l, int r) //更新节点o,刚进来的时候是从根节点开始更新的
{
int oo = ++sz;
Left[oo] = Left[o], Right[oo] = Right[o], sum[oo] = sum[o] + 1;
if (l == r)
return oo;
int mid = (l + r) >> 1;
if (mid >= p)
Left[oo] = update(Left[oo], l, mid);
else
Right[oo] = update(Right[oo], mid + 1, r);
return oo;
}
int query(int u, int v, int l, int r, int k) //利用前缀和的思想,将两个区间相减得到当前区间的线段树并查询第k个值在哪里
{
int mid = (l + r) >> 1;
int x = sum[Left[v]] - sum[Left[u]];
if (l == r)
return l;
if (x >= k) //大于则说明在这棵树之前加入,反之则在这棵树之后加入
return query(Left[u], Left[v], l, mid, k);
else
return query(Right[u], Right[v], mid + 1, r, k - x);
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]), b[i] = a[i];
sort(b + 1, b + 1 + n);
q = unique(b + 1, b + 1 + n) - b - 1;
build(Root[0], 1, q);
for (int i = 1; i <= n; ++i)
{
p = lower_bound(b + 1, b + 1 + q, a[i]) - b;
Root[i] = update(Root[i - 1], 1, q);
}
for (int i = 1; i <= m; i++)
{
int l, r, k;
scanf("%d%d%d", &l, &r, &k);
printf("%d\n", b[query(Root[l - 1], Root[r], 1, q, k)]);
}
return 0;
}