sql + tableau+PowerBI:电商数据分析(Olist)

本文通过对巴西Olist数据集的分析,揭示了销售情况、用户流量、产品分布和商户表现。使用SQL进行数据清洗和分析,发现用户在黑色星期五期间活跃度激增,用户主要在工作日间活跃,重要用户占比低,需采取挽留措施。此外,用户支付主要使用信用卡,多数商户交易额在1000以内,且评分较高。产品交易额集中在低价商品,符合平台的中等偏低价格定位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、分析背景

这是巴西Olist数据集,该数据集包含1个文件,将近10万行。

数据链接:

https://www.kaggle.com/jainaashish/orders-merged

分析该数据可以探究其销售情况,用户流量以及产品的分布,也可以对商户进行评分,多维度分析销售,找出商户影响销售的情况以及客户不满意的原因,以完善服务。

二、理解数据

相关数据说明:

1、product_id:商品ID
2、seller_id:商家ID
3、order_id:订单ID
4、order_purchase_timestamp:下单时间
5、customer_unique_id:用户ID
6、customer_state:客户所在的州
7、review_score:评价得分,客户在满意度调查中给出的注释范围为1到5
8、review_creation_date:发出满意度调查日期
9、payment_type:付款方式
10、payment_installments:客户选择的分期付款数量
11、payment_value:交易金额
12、order_item_id:序号,用于标识同一订单中包含的商品数量
13、seller_state:卖家所在州
14、product_category_name:类别名称

三、分析框架

对整体、用户、商户、产品、销售五个方面进行分析。分析工具为SQL,可视化工具为Tableau和PowerBI

四、数据分析 

1、数据清洗

1.1 检查整体数据

-- 查看数据有多少
SELECT COUNT(*) FROM ecom

1.2 时间戳转换成具体日期

-- 日期格式转化
CREATE VIEW o_time AS
SELECT order_id, 
 customer_unique_id,
 year(order_purchase_timestamp) AS y,
 month(order_purchase_timestamp) AS m,
 date(order_purchase_timestamp) AS d,
 hour(order_purchase_timestamp) AS h 
FROM ecom

1.3 整体情况分析

SELECT SUM(payment_value) AS 总交易金额,count(order_id) AS 总订单量, 
SUM(payment_value)/count(DISTINCT customer_unique_id) AS 客单价,
count(DISTINCT customer_unique_id) AS 用户数,count(DISTINCT seller_id) AS 商家数,
count(DISTINCT product_category_name) AS SPU,count(DISTINCT product_id) AS SKU
FROM ecom;

代码运行结果:总交易金额15,170,437.55元,用户数93,358位,客单价162.50元,总订单数96,478笔,,商家数2,959位,SPU有74个,SKU有31111个


 

2、用户行为分析

2.1 用户流量

2.1.1 日活跃

SELECT d 日期,
count(DISTINCT customer_unique_id) DAU
FROM o_time
GROUP BY d
ORDER BY d

<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值