自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 资源 (2)
  • 收藏
  • 关注

原创 关于《Robust outlier detection based on the changing rate of directed density ratio》的阅读笔记

关于《Robust outlier detection based on the changing rate of directed density ratio》的阅读笔记

2022-09-07 16:06:10 813

原创 粗糙集中的离群点检测方法

粗糙集中的离群点检测方法1. 离群点检测概述离群点检测是数据挖掘的一个重要分支,其目的是找出其行为很不同于预期对象的过程。它在欺诈检测、医疗处理和入侵检测等许多应用中扮演着重要的角色。最近,越来越多的研究者已经开始关注离群点检测,并提出了许多离群点检测方法。如Figure 1所示,是一个基于二维空间距离的简单离群点的例子。一般来说,离群点的类型可以分为三类:全局离群点、情境(或条件)离群点、和集体离群点。对于给定数据集中的任何数据对象,如果它与数据集中的其他对象存在显著偏差,那么它就是全局离群点。全

2020-12-22 23:36:02 1089

FRGOD 离群检测 Matlab 代码

Outlier Detection Based on Fuzzy Rough Granulesin Mixed Attribute Data-离群检测是数据挖掘中一个重要的研究方向。然而,目前的研究大多集中在分类或数值属性数据的离群检测上。关于混合属性数据的离群检测的研究很少。本文引入模糊粗糙集来处理混合属性数据中的离群检测问题。由于经典粗糙集的离群检测模型仅适用于分类属性数据,我们利用FRS对离群检测模型进行泛化,构建了基于模糊粗糙粒的广义离群检测模型。首先,定义颗粒离群度(GOD),利用模糊逼近精度表征模糊粗糙粒的离群度;然后,通过对GOD和相应权重的积分,构造基于模糊粗糙粒的离群因子来表征对象的离群程度;在此基础上,设计了相应的基于模糊粗糙粒的离群点检测(FRGOD)算法。通过在16个真实数据集上的实验,评估了FRGOD算法的有效性。实验结果表明,该算法对离群检测更加灵活,适用于数值、分类和混合属性数据。

2023-05-21

FIEOD 离群检测 Matlab 代码

2020-Fuzzy information entropy-based adaptive approach for hybrid feature outlier detection-Matlab 代码 模糊粗糙集理论中基于模糊关系的模糊信息熵是一种重要的不确定性度量。然而,模糊信息熵用于混合特征离群点检测的研究尚未见报道。在此基础上,利用具有模糊相似关系的模糊近似空间,构造了一种基于模糊信息熵的混合特征离群点检测方法。首先,采用自适应模糊标准差半径和混合模糊相似度构造模糊近似空间,并在模糊信息熵的基础上定义相对模糊熵;然后,构造了两种度量来描述对象的离群度。最后,集成基于模糊熵的离群因子实现离群检测,设计了相关的基于模糊信息熵的离群检测算法(FIEOD)。将FIEOD算法与公共数据上的主要离群点检测算法进行了比较。实验结果表明,该方法具有较好的有效性和适应性。

2022-08-23

混合属性离群点检测-基于邻域值差异度量的离群点检测(NVDMOD)算法

基于邻域值差异度量的离群点检测算法Matlab代码-以邻域粗糙集为背景 针对离群点检测中传统距离法不能有效处理符号属性和经典粗糙集方法不能有效处理数值属性的问题,利用邻域粗糙集的粒化特征提出了改进的邻域值差异度量方法进行离群点检测。首先,将属性取值归一化并以混合欧氏重叠度量和具有自适应特征的邻域半径构建邻域信息系统;其次,以邻域值差异度量构造对象的邻域离群因子;最后,设计并实现了基于邻域值差异度量的离群点检测算法(NVDMOD)。

2020-12-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除