Median of Two Sorted Arrays

Median of Two Sorted Arrays

 
There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

分析:

这是一题经典的题。其一般形式是 在两个已排序数组中寻找第 K 大的数。

通过 比较两个数组中 A[k/2-1] 和 B[k/2-1的大小,可以每次将规模从 k 减少到 K/2.


class Solution {
public:
    double findMedianSortedArrays(int A[], int m, int B[], int n) {
        int len(m+n);
        if(len & 0x1)
          return findKthSortedArrays(A, m, B, n, len/2+1);
        else
          return (findKthSortedArrays(A, m, B, n, len/2) + findKthSortedArrays(A, m, B, n, len/2+1)) / 2.0;
    }
private:
    double findKthSortedArrays(int A[], int m, int B[], int n, int k)
    {
        //assume m >= n
        if(m < n) return findKthSortedArrays(B, n, A, m, k);
        if(n == 0) return A[k-1];
        if(k == 1) return min(A[0], B[0]);
        
        int pb = min(n, k/2);
        int pa = k - pb;
        if(A[pa-1] == B[pb-1]) return A[pa-1];
        else if(A[pa-1] < B[pb-1]) return findKthSortedArrays(A+pa, m-pa, B, n, k-pa);
        else return findKthSortedArrays(A, m, B+pb, n-pb, k-pb);
    }
};


题目描述是关于寻找两个已排序数组 `nums1` 和 `nums2` 的合并后的中位数。这两个数组分别包含 `m` 和 `n` 个元素。要解决这个问题,首先我们需要合并这两个数组并保持有序,然后根据数组的总大小决定取中间值的方式。 1. 合并两个数组:由于数组是有序的,我们可以使用双指针法,一个指向 `nums1` 的起始位置,另一个指向 `nums2` 的起始位置。比较两个指针所指元素的大小,将较小的那个放入一个新的合并数组中,同时移动对应指针。直到其中一个数组遍历完毕,再将另一个数组剩余的部分直接复制到合并数组中。 2. 计算中位数:如果合并数组的长度为奇数,则中位数就是最中间的那个元素;如果长度为偶数,则中位数是中间两个元素的平均值。我们可以通过检查数组长度的奇偶性来确定这一点。 下面是Python的一个基本解决方案: ```python def findMedianSortedArrays(nums1, nums2): merged = [] i, j = 0, 0 # Merge both arrays while i < len(nums1) and j < len(nums2): if nums1[i] < nums2[j]: merged.append(nums1[i]) i += 1 else: merged.append(nums2[j]) j += 1 # Append remaining elements from longer array while i < len(nums1): merged.append(nums1[i]) i += 1 while j < len(nums2): merged.append(nums2[j]) j += 1 # Calculate median length = len(merged) mid = length // 2 if length % 2 == 0: # If even, return average of middle two elements return (merged[mid - 1] + merged[mid]) / 2.0 else: # If odd, return middle element return merged[mid] ``` 这个函数返回的是两个数组合并后的中位数。注意,这里假设数组 `nums1` 和 `nums2` 都是非空的,并且已经按照升序排列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值