深度学习教程 ◉ 吴恩达专项课程最全笔记
文章平均质量分 95
吴恩达老师『深度学习专项课程』久负盛名!ShowMeAI这份笔记『斗胆』做了深度梳理、精简与拓展,内容逻辑更加清晰紧凑!教程配有400张原创高清配图,海量心血换来的品质保障!获取资料与全部更新,请前往 www.showmeai.tech/tutorials/35 欢迎关
ShowMeAI
人工智能领域硬核资料库和学习社区,构建AI解决方案,用知识加速每一次技术成长!
展开
-
深度学习教程 | 吴恩达专项课程 · 全套笔记解读
本篇内容是组织的「深度学习原理知识大全」系列教程入口,教程依托吴恩达老师《深度学习专项课程》,对内容做了重新梳理与制作,以更全面和直观的图文方式,对深度学习涉及的知识、模型、原理、应用领域等进行详解......原创 2022-04-15 00:27:18 · 12202 阅读 · 0 评论 -
AI医疗高精尖!基于AI的新药研发!
『人工智能+新药研发』已经成为国内外医药企业的发展新模式!本文讲解 AI 在新药研发领域的诸多应用方向与 MolSearch 工具库的应用实践——药物晶型预测、靶点选择、患者招募、虚拟药物筛选、AI新药研发辅助系统。原创 2022-09-14 10:58:01 · 11770 阅读 · 0 评论 -
深度学习教程(1) | 深度学习概论(吴恩达·完整版)
本篇为深度学习系列教程的引言,以房价预测为例,讲解神经网络(Neural Network)模型结构和基础知识,并介绍针对监督学习的几类典型神经网络:Standard NN,CNN和RNN等知识原创 2022-04-14 03:59:44 · 16838 阅读 · 0 评论 -
深度学习教程(2) | 神经网络基础(吴恩达·完整版)
本节介绍神经网络的基础——逻辑回归,通过对逻辑回归模型结构的分析,过渡到后续神经网络模型。内容包括二分类问题、逻辑回归模型及损失函数,梯度下降算法,计算图与正向传播及反向传播。......原创 2022-04-14 04:29:23 · 9623 阅读 · 0 评论 -
深度学习教程(3) | 浅层神经网络(吴恩达·完整版)
本文从浅层神经网络入手,讲解神经网络的基本结构(输入层,隐藏层和输出层),浅层神经网络前向传播和反向传播过程,神经网络参数的梯度下降优化,不同的激活函数的优缺点及非线性的原因......原创 2022-04-14 04:43:10 · 10171 阅读 · 0 评论 -
深度学习教程(4) | 深层神经网络(吴恩达·完整版)
本节讨论深层神经网络,包括深层神经网络的结构、深层神经网络前向传播和反向传播过程、需要深层神经网络的原因、神经网络参与超参数、神经网络与人脑简单对比。原创 2022-04-14 04:56:32 · 10042 阅读 · 0 评论 -
深度学习教程(5) | 深度学习的实用层面(吴恩达·完整版)
本篇讲解如何优化神经网络模型,包括Train / Dev / Test sets的切分和比例选择,Bias和Variance的相关知识,防止过拟合的方法,规范化输入以加快梯度下降速度和精度,梯度消失和梯度爆炸的原因及处理方法,梯度检查。......原创 2022-04-14 05:11:27 · 9754 阅读 · 0 评论 -
深度学习教程(6) | 神经网络优化算法(吴恩达·完整版)
本节介绍深度神经网络中的一些优化算法,使用这些技巧和方法来提高神经网络的训练速度和精度:mini-batch,随机梯度下降,指数加权平均,动量梯度下降、RMSprop和Adam算法,学习率衰减法等原创 2022-04-14 05:32:44 · 10470 阅读 · 0 评论 -
深度学习教程(7) | 网络优化:超参数调优、正则化、批归一化和程序框架(吴恩达·完整版)
本节介绍超参数调试、批归一化和深度学习编程框架三个部分,内容包括:超参数优先级与调参技巧,超参数的合适范围确定,Batch Normalization,softmax回归,深度学习框架等。原创 2022-04-14 05:42:59 · 9917 阅读 · 0 评论 -
深度学习教程(8) | AI应用实践策略(上)(吴恩达·完整版)
本节覆盖机器学习中的一些策略和方法,让我们能够更快更有效地让机器学习系统工作,内容包括:正交化方法,建立单值评价指标,数据集划分要点,人类水平误差与可避免偏差,提高机器学习模型性能总结等。......原创 2022-04-14 05:51:14 · 9666 阅读 · 0 评论 -
深度学习教程(9) | AI应用实践策略(下)(吴恩达·完整版)
本节覆盖构建机器学习项目的后半部分内容,包括:错误分析(error analysis),错误标签情况及修正,数据分布和数据不匹配问题及解决办法,迁移学习,多任务学习,端到端学习。原创 2022-04-14 05:58:31 · 9622 阅读 · 0 评论 -
深度学习教程(10) | 卷积神经网络解读(吴恩达·完整版)
本节介绍卷积神经网络,覆盖以下内容要点:卷积计算、填充,卷积神经网络单层结构,池化层结构,卷积神经网络典型结构,CNN特点与优势。原创 2022-04-14 06:07:22 · 11508 阅读 · 0 评论 -
深度学习教程(11) | 经典CNN网络实例详解(吴恩达·完整版)
本节展开介绍典型的CNN结构(LeNet-5、AlexNet、VGG),以及 ResNet(Residual Network,残差网络),Inception Neural Network,1x1卷积,迁移学习,数据扩增和手工工程与计算机现状等知识点原创 2022-04-15 00:28:26 · 12072 阅读 · 0 评论 -
深度学习教程(12) | CNN应用:目标检测(吴恩达·完整版)
本节介绍目标检测,是计算机视觉中最典型的应用之一,主要内容包括:目标定位,特征点检测,目标检测,边框预测,非极大值抑制,YOLO,RCNN等。原创 2022-04-15 00:27:40 · 11401 阅读 · 0 评论 -
深度学习教程(13) | CNN应用:人脸识别和神经风格转换(吴恩达·完整版)
本节介绍计算机视觉中其他应用,包括:人脸识别、Siamese网络、三元组损失Triplet loss、人脸验证、CNN表征、神经网络风格迁移、1D与3D卷积。原创 2022-04-15 00:27:55 · 11357 阅读 · 0 评论 -
深度学习教程(14) | 序列模型与RNN网络(吴恩达·完整版)
本节介绍介绍循环神经网络(RNN)的重要知识,包括:循环神经网络RNN,语言模型,采样生成序列,RNN梯度消失与梯度爆炸,GRU(门控循环单元),LSTM(长短期记忆),双向与深度RNN等原创 2022-04-15 00:28:52 · 10298 阅读 · 0 评论 -
深度学习教程(15) | 自然语言处理与词嵌入(吴恩达·完整版)
本节介绍自然语言处理的文本表示与词嵌入相关知识,包括:词嵌入与迁移学习/类比推理,词嵌入学习方法,神经概率语言模型,word2vec(skip-gram与CBOW),GloVe,情感分析,词嵌入消除偏见原创 2022-04-15 00:29:05 · 9873 阅读 · 0 评论 -
深度学习教程(16) | Seq2seq序列模型和注意力机制(吴恩达·完整版)
本篇介绍自然语言处理中关于序列模型的高级知识,包括Sequence to sequence序列到序列模型和注意力机制。原创 2022-04-15 00:29:15 · 9905 阅读 · 0 评论