window8 怎么取数据

问题1:windows8 能直接访问数据库吗?

这篇文章很好的讲述了访问数据库的几种方式

今天我就写了下用webservice的方式取得数据库。

web服务器上面的代码应该都会写,主要说下window8 客户端取得数据的步骤,


1:首先引用webservice服务引用

2:初始化webservice服务对象,

 MovieServiceReference.MoviesInfoServerSoapClient m = new MovieServiceReference.MoviesInfoServerSoapClient();

3:异步调用

 var sampleDataGroups = await m.GetMoviesListAsync();
            ObservableCollection<MovieServiceReference.MovieInfo> list = sampleDataGroups.Body.GetMoviesListResult;

这里调用了***async()的异步方法完成异步调用,await关键字是,net 4.5新增加的特性,他表示该方法是异步的,同时会将该代码后面的代码封装在一个委托当中,当异步完成时才能调用。即将异步方法类似同步实现。

同时需要注意:使用await关键字,方法体上必须声明该方法是异步方法,必须使用async关键字修饰

 private async void navigationHelper_LoadState(object sender, LoadStateEventArgs e)
        {
            // TODO:  创建适用于问题域的合适数据模型以替换示例数据
           // var sampleDataGroups = await SampleDataSource.GetGroupsAsync();
           // this.DefaultViewModel["Groups"] = sampleDataGroups;
            MovieServiceReference.MoviesInfoServerSoapClient m = new MovieServiceReference.MoviesInfoServerSoapClient();
            var sampleDataGroups = await m.GetMoviesListAsync();
            ObservableCollection<MovieServiceReference.MovieInfo> list = sampleDataGroups.Body.GetMoviesListResult;
            ObservableCollection<MovieModel> movieList = new ObservableCollection<MovieModel>();
            foreach (var item in list)
            {
                MovieModel model = new MovieModel();
                model.Movie = item;
                model.MovieImage = new BitmapImage(new Uri("http://localhost:1930/ImageHandler.ashx?id="+item.MovieId));
                movieList.Add(model);
            }
            
            itemGridView.DataContext = movieList;
        }

如果要使用图片资源,建议不要再webservice里面直接写,会影响取得数据的速度,可以用一个一般处理程序来取得图片字节


OK,基本上取得远程数据的方式就这些,下次再写下其他方式

此项目参考"传智播客.net培训Windows 8开发视频教程"


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值