[ACTF2023]复现

 MDH

源题:

from hashlib import sha256
from secret import flag

r = 128
c = 96
p = 308955606868885551120230861462612873078105583047156930179459717798715109629
Fp = GF(p)

def gen():
    a1 = random_matrix(Fp, r, c)
    a2 = random_matrix(Fp, r, c)
    A = a1 * a2.T
    return (a1, a2), A

sk_alice, pk_alice = gen()
sk_bob, pk_bob = gen()
shared = (sk_alice[0].T * pk_bob * sk_alice[1]).trace()
ct = int(sha256(str(int(shared)).encode()).hexdigest(), 16) ^^ int.from_bytes(flag, 'big')

with open('output.txt', 'wb') as f:
    f.write(str(ct).encode() + b'\n')
    f.write(str(list(pk_alice)).encode() + b'\n')
    f.write(str(list(pk_bob)).encode() + b'\n')

思路:本题思路很简单,高等代数,sk_alice[0].T * pk_bob * sk_alice[1]和pk_bob*pk_alice.T的迹的大小是相等的。

exp:

from hashlib import sha256
from Crypto.Util.number import*

r = 128
c = 96
p = 308955606868885551120230861462612873078105583047156930179459717798715109629
Fp = GF(p)

f = open('output.txt','r')
ct = eval(f.readline())
a1 = eval(f.readline())
a2 = eval(f.readline())

pk_alice = matrix(Fp,a1)
pk_bob = matrix(Fp,a2)
# print(pk_alice)
# print(pk_bob)
shared = (pk_bob*pk_alice.T).trace()
m = int(sha256(str(int(shared)).encode()).hexdigest(), 16) ^^ ct
print(long_to_bytes(m))

claw crane

源码:

!/usr/bin/env python3
from Crypto.Util.number import (
    bytes_to_long, long_to_bytes
)
from hashlib import md5
import os, signal
import sys
import random

BITS = 128

class ClawCrane(object):
    def __init__(self) -> None:
        self.seed = bytes_to_long(os.urandom(BITS//8))
        self.bless = 0
        self.score = 0
    
    def get_input(self, prompt="> "):
        print(prompt, end="")
        sys.stdout.flush()
        return input()
    
    def check_pos(self, pos, moves):
        col, row = 0, 0
        for move in moves:
            if move == "W":
                if row < 15: row += 1
            elif move == "S":
                if row > 0: row -= 1
            elif move == "A":
                if col > 0: col -= 1
            elif move == "D":
                if col < 15: col += 1
            else:
                return -1
        print(col, row)
        return pos == [col, row]
    
    def gen_chaos(self, inp):
        def mapping(x):
            if x=='W': return "0"
            if x=='S': return "1"
            if x=='A': return "2"
            if x=='D': return "3"
        vs = int("".join(map(mapping, inp)), 4)
        chaos = bytes_to_long(md5(
                    long_to_bytes((self.seed + vs) % pow(2,BITS))
                ).digest())
        self.seed = (self.seed + chaos + 1) % pow(2,BITS)
        return chaos
    
    def destiny_claw(self, delta):
        bits = bin(delta)[2:]
        if len(bits) < 128+self.bless:
            bits += "0"*(128+self.bless - len(bits))
        c = random.choice(bits)
        if c=='0': return True
        else: return False
    
    def run(self):
        pos = [random.randrange(1,16), random.randrange(1,16)]
        moves = self.get_input(f"i am at {pos}, claw me.\nYour moves: ")
        if len(moves) > 100:
            print("too many steps")
            return
        if not self.check_pos(pos, moves):
            print("sorry, clawed nothing")
            return
        r = self.gen_chaos(moves[:64])
        print(f"choas: {r}")
        p, q = map(int, self.get_input(f"give me your claw using p,q and p,q in [0, 18446744073709551615] (e.g.: 1,1): ").split(","))
        if not (p>0 and p<pow(2,BITS//2) and q>0 and q<pow(2,BITS//2)):
            print("not in range")
            return
        delta = abs(r*q - p*pow(2,BITS))
        if self.destiny_claw(delta):
            self.score += 10
            self.bless = 0
            print("you clawed it")
        else:
            self.bless += 16
            print("sorry, clawed nothing")
        

def main():
    signal.alarm(600)
    cc = ClawCrane()
    for _ in range(256):
        try:
            cc.run()
            print(f"your score: {cc.score}")
        except:
            print(f"abort")
            break
    if cc.score >= 2220:
        print(f"flag: {open('/flag.txt').read()}")
        
if __name__ == "__main__":
    main()

思路:在本题目中我们需要绕过proof验证、check_pos的位置验证和以下

chaos = bytes_to_long(md5(
            long_to_bytes((self.seed + vs) % pow(2,BITS))
        ).digest())
self.seed = (self.seed + chaos + 1) % pow(2,BITS)

首先:

proof验证:我们知道是将十六进制数输入,进行sha1操作与已知输出对比,相同即可通过,我们在输入的十六进制数的前六位未知,直接爆破即可。

check_pos的位置验证:我们观察源码,源码是通过构造的输入序列(‘A’,'B','C','D'),对此时在(0,0)的点进行位移输入到随机确认的pos位置上,若最终移动的位置相同,即可通过。

由于  r = self.gen_chaos(moves[:64]),moves是我们自己输入的,此时函数仅仅需要前64位进行运算获得r的值,我们需要固定r的值的大小,所以此时便在seed上做文章,令每次输入的vs都在上一个vs的基础上减去(chaos + 1),此时,输出的chaos值固定。

于是,check_pos的位置验证中,我们输入序列的前64位由上述r取值中确认,我们需要计算出64次移动后的位置,再寻找到pos点的移动所需里程。

完成上述操作后,开始运算,当cc.score >= 2220时,我们即可得到flag的值

exp:

import itertools
from Crypto.Util.number import *
from hashlib import md5
import gmpy2
from pwn import *
from tqdm import tqdm
from hashlib import *
from time import *

BITS = 128


def proof():
    sh.recvuntil(b'sha1(prefix+"')
    k = sh.recvuntil(b'"')[:-1]
    sh.recvuntil(b')==')
    cc = sh.recvuntil(b'\n')[:-1]
    sh.recvuntil(b'prefix = ?\n')
    String = b'0123456789abcdef'
    #     print(k,cc)

    start = time()
    for i1, i2, i3, i4, i5, i6 in tqdm(itertools.product(String, String, String, String, String, String)):
        kk = str(chr(i1)) + str(chr(i2)) + str(chr(i3)) + str(chr(i4)) + str(chr(i5)) + str(chr(i6)) + k.decode()
        # print(kk,k.decode())
        # print(sha1(kk.encode()).hexdigest(),cc.decode())
        if sha1(kk.encode()).hexdigest() == cc.decode():
            print(kk[:6])
            sh.sendline(kk[:6].encode())
            break
    end = time()
    print(f"consume {end - start} time")


def check_pos(pos, moves):
    col, row = int(pos[0]), int(pos[1])
    for move in moves:
        if move == "W":
            if row < 15: row += 1
        elif move == "S":
            if row > 0: row -= 1
        elif move == "A":
            if col > 0: col -= 1
        elif move == "D":
            if col < 15: col += 1
        else:
            return -1
    print(col, row)
    return [col, row]


def solve_chaos(la_chaos, idx):
    def mapping(x):
        if x == '0': return "W"
        if x == '1': return "S"
        if x == '2': return "A"
        if x == '3': return "D"

    New_vs = (-la_chaos - 1) * (idx - 1) % (2 ^ 128)
    target = New_vs % 4
    new_vs = ''
    while New_vs:
        if target == 0:
            new_vs += 'W'
            New_vs = New_vs // 4
        if target == 1:
            new_vs += 'S'
            New_vs = New_vs // 4
        if target == 2:
            new_vs += 'A'
            New_vs = New_vs // 4
        if target == 3:
            new_vs += 'D'
            New_vs = New_vs // 4
        target = New_vs % 4
    #         print(new_vs)
    new_vs = new_vs[::-1]
    if len(new_vs) != 64:
        new_vs = mapping("0") * (64 - len(new_vs)) + new_vs
    print('solve_chaos:', new_vs)
    return new_vs


def solve_pos(cu_pos, new_pos, sol):
    x0, y0 = cu_pos
    x1, y1 = new_pos
    if x0 < x1:
        sol += 'D' * ((x1 - x0) % 16)
    else:
        sol += 'A' * ((x0 - x1) % 16)
    if y0 < y1:
        sol += 'W' * ((y1 - y0) % 16)
    else:
        sol += 'S' * ((y0 - y1) % 16)
    return sol


def solve_pq(chaos):
    K = matrix(ZZ, [[2 ^ 128, 0], [chaos, 1]])
    KK = K.LLL()
    #     print(num)
    v = K.solve_left(KK[0])
    p, q = v[0], v[1]
    return abs(p), abs(q)


for i in range(1, 10000):
    print(f'Try {i} times')
    sh = process(['python3', 'server.py'])
    proof()
    Assert, chaos, idx, failure, success = 0, -1, 0, 0, 0
    p, q = 0, 0

    try:
        while idx < 256:
            idx += 1
            print(f'----------The {idx} quarters---------')
            sh.recvuntil(b'i am at ')
            pos = eval(sh.recvuntil(b']'))
            sh.recvuntil(b'Your moves: ')
            x1, y1 = int(pos[0]), int(pos[1])
            #             print(pos,x1,y1,chaos)
            vs = solve_chaos(chaos, idx)
            #             print(vs)
            x0, y0 = check_pos((0, 0), vs)
            moves = solve_pos((x0, y0), (x1, y1), vs)
            sh.sendline(moves.encode())
            sh.recvuntil(b'choas: ')
            chaos = int(sh.recvuntil(b'\n')[:-1])
            if not p and not q:
                p, q = solve_pq(chaos)
                x = abs(chaos * q - p * pow(2, 128))
                print(bin(x)[2:].count('1'))
                print(bin(x)[2:])
                if bin(x)[2:].count('1') > 23:
                    break
            print(abs(chaos * q - p * pow(2, 128)))
            sh.recvuntil(b'give me your claw using p,q and p,q in [0, 18446744073709551615] (e.g.: 1,1): ')
            sh.sendline(f'{p},{q}'.encode())

            ding = sh.recvline()
            #             print(ding)

            sh.recvuntil(b'your score: ')
            score = sh.recvuntil(b'\n')[:-1]
            print('Your score: ', score)

        sh.interactive()
    except:
        continue

EazyRSA

源码:

from secret import flag
from Crypto.Util.number import *


def genKey(nbits, dbits):
    bbits = (nbits // 2 - dbits) // 2

    while True:
        a = getRandomNBitInteger(dbits)
        b = getRandomNBitInteger(bbits)
        c = getRandomNBitInteger(bbits)
        p1 = a * b * c + 1
        if isPrime(p1):
            # print("p1 =", p1)
            break

    while True:
        d = getRandomNBitInteger(dbits)
        p2 = b * c * d + 1
        if isPrime(p2):
            # print("p2 =", p2)
            break

    while True:
        e = getRandomNBitInteger(bbits)
        f = getRandomNBitInteger(bbits)
        q1 = e * d * f + 1
        p3 = a * e * f + 1
        if isPrime(q1) and isPrime(p3):
            # print("p3 =", p3)
            # print("q1 =", q1)
            break

    while True:
        d_ = getRandomNBitInteger(dbits)
        if GCD(a * b * c * d * e * f, d_) != 1:
            continue
        e_ = inverse(d_, a * b * c * d * e * f)
        k1 = (e_ * d_ - 1) // (a * b * c * d * e * f)
        assert e_ * d_ == (a * b * c * d * e * f) * k1 + 1
        q2 = k1 * e * f + 1
        q3 = k1 * b * c + 1
        if isPrime(q2) and isPrime(q3):
            # print("q2 =", q2)
            # print("q3 =", q3)
            # print("e =", e_)
            # print("d =", d_)
            break

    n1 = p1 * q1
    n2 = p2 * q2
    n3 = p3 * q3
    
    assert pow(pow(0xdeadbeef, e_, n1), d_, n1) == 0xdeadbeef
    assert pow(pow(0xdeadbeef, e_, n2), d_, n2) == 0xdeadbeef
    assert pow(pow(0xdeadbeef, e_, n3), d_, n3) == 0xdeadbeef

    return(e_, n1, n2, n3)


nbits = 0x600
dbits = 0x210

m = bytes_to_long(flag)
e, n1, n2, n3 = genKey(nbits, dbits)
c = pow(m, e, n1)

print("c =", c)
print("e =", e)
print("n1 =", n1)
print("n2 =", n2)
print("n3 =", n3)

# c = 63442255298812942222810837512019302954917822996915527697525497640413662503768308023517128481053593562877494934841788054865410798751447333551319775025362132176942795107214528962480350398519459474033659025815248579631003928932688495682277210240277909527931445899728273182691941548330126199931886748296031014210795428593631253184315074234352536885430181103986084755140024577780815130067722355861473639612699372152970688687877075365330095265612016350599320999156644
# e = 272785315258275494478303901715994595013215169713087273945370833673873860340153367010424559026764907254821416435761617347240970711252213646287464416524071944646705551816941437389777294159359383356817408302841561284559712640940354294840597133394851851877857751302209309529938795265777557840238332937938235024502686737802184255165075195042860413556866222562167425361146312096189555572705076252573222261842045286782816083933952875990572937346408235562417656218440227
# n1 = 473173031410877037287927970398347001343136400938581274026578368211539730987889738033351265663756061524526288423355193643110804217683860550767181983527932872361546531994961481442866335447011683462904976896894011884907968495626837219900141842587071512040734664898328709989285205714628355052565784162841441867556282849760230635164284802614010844226671736675222842060257156860013384955769045790763119616939897544697150710631300004180868397245728064351907334273953201
# n2 = 327163771871802208683424470007561712270872666244394076667663345333853591836596054597471607916850284565474732679392694515656845653581599800514388800663813830528483334021178531162556250468743461443904645773493383915711571062775922446922917130005772040139744330987272549252540089872170217864935146429898458644025927741607569303966038195226388964722300472005107075179204987774627759625183739199425329481632596633992804636690274844290983438078815836605603147141262181
# n3 = 442893163857502334109676162774199722362644200933618691728267162172376730137502879609506615568680508257973678725536472848428042122350184530077765734033425406055810373669798840851851090476687785235612051747082232947418290952863499263547598032467577778461061567081620676910480684540883879257518083587862219344609851852177109722186714811329766477552794034774928983660538381764930765795290189612024799300768559485810526074992569676241537503405494203262336327709010421

 思路:造格即可

exp:

from sage.all import *
from Crypto.Util.number import *
import random

c = 63442255298812942222810837512019302954917822996915527697525497640413662503768308023517128481053593562877494934841788054865410798751447333551319775025362132176942795107214528962480350398519459474033659025815248579631003928932688495682277210240277909527931445899728273182691941548330126199931886748296031014210795428593631253184315074234352536885430181103986084755140024577780815130067722355861473639612699372152970688687877075365330095265612016350599320999156644
e = 272785315258275494478303901715994595013215169713087273945370833673873860340153367010424559026764907254821416435761617347240970711252213646287464416524071944646705551816941437389777294159359383356817408302841561284559712640940354294840597133394851851877857751302209309529938795265777557840238332937938235024502686737802184255165075195042860413556866222562167425361146312096189555572705076252573222261842045286782816083933952875990572937346408235562417656218440227
n1 = 473173031410877037287927970398347001343136400938581274026578368211539730987889738033351265663756061524526288423355193643110804217683860550767181983527932872361546531994961481442866335447011683462904976896894011884907968495626837219900141842587071512040734664898328709989285205714628355052565784162841441867556282849760230635164284802614010844226671736675222842060257156860013384955769045790763119616939897544697150710631300004180868397245728064351907334273953201
n2 = 327163771871802208683424470007561712270872666244394076667663345333853591836596054597471607916850284565474732679392694515656845653581599800514388800663813830528483334021178531162556250468743461443904645773493383915711571062775922446922917130005772040139744330987272549252540089872170217864935146429898458644025927741607569303966038195226388964722300472005107075179204987774627759625183739199425329481632596633992804636690274844290983438078815836605603147141262181
n3 = 442893163857502334109676162774199722362644200933618691728267162172376730137502879609506615568680508257973678725536472848428042122350184530077765734033425406055810373669798840851851090476687785235612051747082232947418290952863499263547598032467577778461061567081620676910480684540883879257518083587862219344609851852177109722186714811329766477552794034774928983660538381764930765795290189612024799300768559485810526074992569676241537503405494203262336327709010421

M  =  int(random.randint(n1,2*n2) ** 0.5)
K = matrix([[M,e,e,e],[0,-n1,0,0],[0,0,-n2,0],[0,0,0,-n3]])
KK =  K.LLL()
d = int(KK[0][0]/M)
m = pow(c,d,n1)
print(long_to_bytes(int(m)))

MidRSA

源码:

from secret import flag
from Crypto.Util.number import *


def genKey(nbits, dbits):
    bbits = (nbits // 2 - dbits) // 2

    while True:
        a = getRandomNBitInteger(dbits)
        b = getRandomNBitInteger(bbits)
        c = getRandomNBitInteger(bbits)
        p1 = a * b * c + 1
        if isPrime(p1):
            # print("p1 =", p1)
            break

    while True:
        d = getRandomNBitInteger(dbits)
        p2 = b * c * d + 1
        if isPrime(p2):
            # print("p2 =", p2)
            break

    while True:
        e = getRandomNBitInteger(bbits)
        f = getRandomNBitInteger(bbits)
        q1 = e * d * f + 1
        p3 = a * e * f + 1
        if isPrime(q1) and isPrime(p3):
            # print("p3 =", p3)
            # print("q1 =", q1)
            break

    while True:
        d_ = getRandomNBitInteger(dbits)
        if GCD(a * b * c * d * e * f, d_) != 1:
            continue
        e_ = inverse(d_, a * b * c * d * e * f)
        k1 = (e_ * d_ - 1) // (a * b * c * d * e * f)
        assert e_ * d_ == (a * b * c * d * e * f) * k1 + 1
        q2 = k1 * e * f + 1
        q3 = k1 * b * c + 1
        if isPrime(q2) and isPrime(q3):
            # print("q2 =", q2)
            # print("q3 =", q3)
            # print("e =", e_)
            print("d =", d_)
            break

    n1 = p1 * q1
    n2 = p2 * q2
    n3 = p3 * q3
    
    assert pow(pow(0xdeadbeef, e_, n1), d_, n1) == 0xdeadbeef
    assert pow(pow(0xdeadbeef, e_, n2), d_, n2) == 0xdeadbeef
    assert pow(pow(0xdeadbeef, e_, n3), d_, n3) == 0xdeadbeef

    return(e_, n1, n2, n3)


nbits = 0x600
dbits = 0x240

m = bytes_to_long(flag)
e, n1, n2, n3 = genKey(nbits, dbits)
c = pow(m, e, n1)

print("c =", c)
print("e =", e)
print("n1 =", n1)
print("n2 =", n2)
print("n3 =", n3)


# c = 598823083137858565473505718525815255620672892612784824187302545127574115000325539999824374357957135208478070797113625659118825530731575573239221853507638809719397849963861367352055486212696958923800593172417262351719477530809870735637329898331854130533160020420263724619225174940214193740379571953951059401685115164634005411478583529751890781498407518739069969017597521632392997743956791839564573371955246955738575593780508817401390102856295102225132502636316844
# e = 334726528702628887205076146544909357751287869200972341824248480332256143541098971600873722567713812425364296038771650383962046800505086167635487091757206238206029361844181642521606953049529231154613145553220809927001722518303114599682529196697410089598230645579658906203453435640824934159645602447676974027474924465177723434855318446073578465621382859962701578350462059764095163424218813852195709023435581237538699769359084386399099644884006684995755938605201771
# n1 = 621786427956510577894657745225233425730501124908354697121702414978035232119311662357181409283130180887720760732555757426221953950475736078765267856308595870951635246720750862259255389006679454647170476427262240270915881126875224574474706572728931213060252787326765271752969318854360970801540289807965575654629288558728966771231501959974533484678236051025940684114262451777094234017210230731492336480895879764397821363102224085859281971513276968559080593778873231
# n2 = 335133378611627373902246132362791381335635839627660359611198202073307340179794138179041524058800936207811546752188713855950891460382258433727589232119735602364790267515558352318957355100518427499530387075144776790492766973547088838586041648900788325902589777445641895775357091753360428198189998860317775077739054298868885308909495601041757108114540069950359802851809227248145281594107487276003206931533768902437356652676341735882783415106786497390475670647453821
# n3 = 220290953009399899705676642623181513318918775662713704923101352853965768389363281894663344270979715555659079125651553079702318700200824118622766698792556506368153467944348604006011828780474050012010677204862020009069971864222175380878120025727369117819196954091417740367068284457817961773989542151049465711430065838517386380261817772422927774945414543880659243592749932727798690742051285364898081188510009069286094647222933710799481899960520270189522155672272451

思路:相比于EazyRSA题目,提高了dbits的比特数,使得无法计算,此时我们需要爆破一定的高位即可。

exp:

from sage.all import *
from Crypto.Util.number import *
import random
from tqdm import tqdm

c = 598823083137858565473505718525815255620672892612784824187302545127574115000325539999824374357957135208478070797113625659118825530731575573239221853507638809719397849963861367352055486212696958923800593172417262351719477530809870735637329898331854130533160020420263724619225174940214193740379571953951059401685115164634005411478583529751890781498407518739069969017597521632392997743956791839564573371955246955738575593780508817401390102856295102225132502636316844
e = 334726528702628887205076146544909357751287869200972341824248480332256143541098971600873722567713812425364296038771650383962046800505086167635487091757206238206029361844181642521606953049529231154613145553220809927001722518303114599682529196697410089598230645579658906203453435640824934159645602447676974027474924465177723434855318446073578465621382859962701578350462059764095163424218813852195709023435581237538699769359084386399099644884006684995755938605201771
n1 = 621786427956510577894657745225233425730501124908354697121702414978035232119311662357181409283130180887720760732555757426221953950475736078765267856308595870951635246720750862259255389006679454647170476427262240270915881126875224574474706572728931213060252787326765271752969318854360970801540289807965575654629288558728966771231501959974533484678236051025940684114262451777094234017210230731492336480895879764397821363102224085859281971513276968559080593778873231
n2 = 335133378611627373902246132362791381335635839627660359611198202073307340179794138179041524058800936207811546752188713855950891460382258433727589232119735602364790267515558352318957355100518427499530387075144776790492766973547088838586041648900788325902589777445641895775357091753360428198189998860317775077739054298868885308909495601041757108114540069950359802851809227248145281594107487276003206931533768902437356652676341735882783415106786497390475670647453821
n3 = 220290953009399899705676642623181513318918775662713704923101352853965768389363281894663344270979715555659079125651553079702318700200824118622766698792556506368153467944348604006011828780474050012010677204862020009069971864222175380878120025727369117819196954091417740367068284457817961773989542151049465711430065838517386380261817772422927774945414543880659243592749932727798690742051285364898081188510009069286094647222933710799481899960520270189522155672272451

for i in tqdm(range(70000,2^20)):
    t1 = bin(i)[2:].zfill(21)
    h = int('1'+t1[:3],2) << 0x23c
    h1 = int(t1[3:9],2) << 1338
    h2 = int(t1[9:15],2) << 1338
    h3 = int(t1[15:21],2) << 1338
    M = Matrix(QQ,[[-e,-e,-e,2^766,0,0,0,0],
                    [n1,0,0,0,0,0,0,0],
                    [0,n2,0,0,0,0,0,0],
                    [0,0,n3,0,0,0,0,0],
                    [-h*e,-h*e,-h*e,0,2^(1338),0,0,0],
                    [-h1,0,0,0,0,2^1338,0,0],
                    [0,-h2,0,0,0,0,2^1338,0],
                    [0,0,-h3,0,0,0,0,2^1338]])
# e_*d_-k1*n1,n1
    res = M.LLL()
    d = int(res[0][3]//2^766) + h
    if b'ACTF' in long_to_bytes(ZZ(pow(c,d,n1))):
        print(long_to_bytes(ZZ(pow(c,d,n1))))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值